merged latest changes

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
Francisco Javier Arceo 2025-04-06 23:20:56 -04:00
parent f822c583ee
commit 11b53acfb8

View file

@ -68,10 +68,8 @@ The config file is a YAML file that specifies the providers and their configurat
```bash
INFERENCE_MODEL=llama3.2:3b llama stack build --template ollama --image-type venv --run
```
You will see output like below:
```
...
INFO: Application startup complete.
INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
```
@ -79,7 +77,7 @@ INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit
### ii. Using the Llama Stack Client
Now you can use the llama stack client to run inference and build agents!
:::{dropdown} You can reuse the server setup or the Llama Stack Client
_Note: You can reuse the server setup or the Llama Stack Client_
Open a new terminal and navigate to the same directory you started the server from.
@ -138,7 +136,7 @@ ChatCompletionResponse(
],
)
```
### i. Create a Script used by the Llama Stack Client
### i. Create the Script
Create a file `inference.py` and add the following code:
```python
@ -180,6 +178,7 @@ Beauty in the bits
```
## Step 5: Run Your First Agent
### i. Create the Script
Now we can move beyond simple inference and build an agent that can perform tasks using the Llama Stack server.
Create a file `agent.py` and add the following code:
@ -226,7 +225,7 @@ Let's run the script using `uv`
```bash
uv run python agent.py
```
:::{dropdown} `Sample output`
:::{dropdown} `👋 Click here to see the sample output`
```
Non-streaming ...
agent> I'm an artificial intelligence designed to assist and communicate with users like you. I don't have a personal identity, but I'm here to provide information, answer questions, and help with tasks to the best of my abilities.
@ -436,7 +435,7 @@ Let's run the script using `uv`
```bash
uv run python rag_agent.py
```
:::{dropdown} `Sample output`
:::{dropdown} `👋 Click here to see the sample output`
```
user> what is torchtune
inference> [knowledge_search(query='TorchTune')]