feat(openai-responses): Support multiple message roles in API inputs

Also update the nesting to add multiple messages(where appropriate)
rather then a single message with multiple content parts.

Signed-off-by: Derek Higgins <derekh@redhat.com>
This commit is contained in:
Derek Higgins 2025-05-02 11:10:07 +01:00 committed by Ben Browning
parent 1369b5858e
commit 150b9a0834
2 changed files with 83 additions and 14 deletions

View file

@ -9,10 +9,15 @@ from unittest.mock import AsyncMock
import pytest
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessage,
OpenAIResponseInputMessageContentText,
OpenAIResponseInputToolWebSearch,
OpenAIResponseOutputMessage,
)
from llama_stack.apis.inference.inference import (
OpenAIAssistantMessageParam,
OpenAIChatCompletionContentPartTextParam,
OpenAIDeveloperMessageParam,
OpenAIUserMessageParam,
)
from llama_stack.apis.tools.tools import Tool, ToolGroups, ToolInvocationResult, ToolParameter, ToolRuntime
@ -156,3 +161,49 @@ async def test_create_openai_response_with_string_input_with_tools(openai_respon
assert len(result.output) >= 1
assert isinstance(result.output[1], OpenAIResponseOutputMessage)
assert result.output[1].content[0].text == "Dublin"
@pytest.mark.asyncio
async def test_create_openai_response_with_multiple_messages(openai_responses_impl, mock_inference_api):
"""Test creating an OpenAI response with multiple messages."""
# Setup
input_messages = [
OpenAIResponseInputMessage(role="developer", content="You are a helpful assistant", name=None),
OpenAIResponseInputMessage(role="user", content="Name some towns in Ireland", name=None),
OpenAIResponseInputMessage(
role="assistant",
content=[
OpenAIResponseInputMessageContentText(text="Galway, Longford, Sligo"),
OpenAIResponseInputMessageContentText(text="Dublin"),
],
name=None,
),
OpenAIResponseInputMessage(role="user", content="Which is the largest town in Ireland?", name=None),
]
model = "meta-llama/Llama-3.1-8B-Instruct"
mock_inference_api.openai_chat_completion.return_value = load_chat_completion_fixture("simple_chat_completion.yaml")
# Execute
await openai_responses_impl.create_openai_response(
input=input_messages,
model=model,
temperature=0.1,
)
# Verify the the correct messages were sent to the inference API i.e.
# All of the responses message were convered to the chat completion message objects
inference_messages = mock_inference_api.openai_chat_completion.call_args_list[0].kwargs["messages"]
for i, m in enumerate(input_messages):
if isinstance(m.content, str):
assert inference_messages[i].content == m.content
else:
assert inference_messages[i].content[0].text == m.content[0].text
assert isinstance(inference_messages[i].content[0], OpenAIChatCompletionContentPartTextParam)
assert inference_messages[i].role == m.role
if m.role == "user":
assert isinstance(inference_messages[i], OpenAIUserMessageParam)
elif m.role == "assistant":
assert isinstance(inference_messages[i], OpenAIAssistantMessageParam)
else:
assert isinstance(inference_messages[i], OpenAIDeveloperMessageParam)