mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-30 07:39:38 +00:00
add NVIDIA NIM inference adapter
This commit is contained in:
parent
ac93dd89cf
commit
2dd8c4bcb6
12 changed files with 1115 additions and 0 deletions
18
llama_stack/providers/adapters/inference/nvidia/__init__.py
Normal file
18
llama_stack/providers/adapters/inference/nvidia/__init__.py
Normal file
|
@ -0,0 +1,18 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from ._config import NVIDIAConfig
|
||||||
|
from ._nvidia import NVIDIAInferenceAdapter
|
||||||
|
|
||||||
|
|
||||||
|
async def get_adapter_impl(config: NVIDIAConfig, _deps) -> NVIDIAInferenceAdapter:
|
||||||
|
if not isinstance(config, NVIDIAConfig):
|
||||||
|
raise RuntimeError(f"Unexpected config type: {type(config)}")
|
||||||
|
adapter = NVIDIAInferenceAdapter(config)
|
||||||
|
return adapter
|
||||||
|
|
||||||
|
|
||||||
|
__all__ = ["get_adapter_impl", "NVIDIAConfig"]
|
52
llama_stack/providers/adapters/inference/nvidia/_config.py
Normal file
52
llama_stack/providers/adapters/inference/nvidia/_config.py
Normal file
|
@ -0,0 +1,52 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import os
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from llama_models.schema_utils import json_schema_type
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
|
|
||||||
|
@json_schema_type
|
||||||
|
class NVIDIAConfig(BaseModel):
|
||||||
|
"""
|
||||||
|
Configuration for the NVIDIA NIM inference endpoint.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
base_url (str): A base url for accessing the NVIDIA NIM, e.g. http://localhost:8000
|
||||||
|
api_key (str): The access key for the hosted NIM endpoints
|
||||||
|
|
||||||
|
There are two ways to access NVIDIA NIMs -
|
||||||
|
0. Hosted: Preview APIs hosted at https://integrate.api.nvidia.com
|
||||||
|
1. Self-hosted: You can run NVIDIA NIMs on your own infrastructure
|
||||||
|
|
||||||
|
By default the configuration is set to use the hosted APIs. This requires
|
||||||
|
an API key which can be obtained from https://ngc.nvidia.com/.
|
||||||
|
|
||||||
|
By default the configuration will attempt to read the NVIDIA_API_KEY environment
|
||||||
|
variable to set the api_key. Please do not put your API key in code.
|
||||||
|
|
||||||
|
If you are using a self-hosted NVIDIA NIM, you can set the base_url to the
|
||||||
|
URL of your running NVIDIA NIM and do not need to set the api_key.
|
||||||
|
"""
|
||||||
|
|
||||||
|
base_url: str = Field(
|
||||||
|
default="https://integrate.api.nvidia.com",
|
||||||
|
description="A base url for accessing the NVIDIA NIM",
|
||||||
|
)
|
||||||
|
api_key: Optional[str] = Field(
|
||||||
|
default_factory=lambda: os.getenv("NVIDIA_API_KEY"),
|
||||||
|
description="The NVIDIA API key, only needed of using the hosted service",
|
||||||
|
)
|
||||||
|
timeout: int = Field(
|
||||||
|
default=60,
|
||||||
|
description="Timeout for the HTTP requests",
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def is_hosted(self) -> bool:
|
||||||
|
return "integrate.api.nvidia.com" in self.base_url
|
176
llama_stack/providers/adapters/inference/nvidia/_nvidia.py
Normal file
176
llama_stack/providers/adapters/inference/nvidia/_nvidia.py
Normal file
|
@ -0,0 +1,176 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import warnings
|
||||||
|
from typing import Dict, List, Optional, Union
|
||||||
|
|
||||||
|
import httpx
|
||||||
|
from llama_models.datatypes import SamplingParams
|
||||||
|
from llama_models.llama3.api.datatypes import (
|
||||||
|
InterleavedTextMedia,
|
||||||
|
Message,
|
||||||
|
ToolChoice,
|
||||||
|
ToolDefinition,
|
||||||
|
ToolPromptFormat,
|
||||||
|
)
|
||||||
|
from llama_models.sku_list import CoreModelId
|
||||||
|
|
||||||
|
from llama_stack.apis.inference import (
|
||||||
|
ChatCompletionRequest,
|
||||||
|
ChatCompletionResponse,
|
||||||
|
ChatCompletionResponseStreamChunk,
|
||||||
|
CompletionResponse,
|
||||||
|
CompletionResponseStreamChunk,
|
||||||
|
EmbeddingsResponse,
|
||||||
|
Inference,
|
||||||
|
LogProbConfig,
|
||||||
|
ModelDef,
|
||||||
|
ResponseFormat,
|
||||||
|
)
|
||||||
|
|
||||||
|
from ._config import NVIDIAConfig
|
||||||
|
from ._utils import check_health, convert_chat_completion_request, parse_completion
|
||||||
|
|
||||||
|
SUPPORTED_MODELS: Dict[CoreModelId, str] = {
|
||||||
|
CoreModelId.llama3_8b_instruct: "meta/llama3-8b-instruct",
|
||||||
|
CoreModelId.llama3_70b_instruct: "meta/llama3-70b-instruct",
|
||||||
|
CoreModelId.llama3_1_8b_instruct: "meta/llama-3.1-8b-instruct",
|
||||||
|
CoreModelId.llama3_1_70b_instruct: "meta/llama-3.1-70b-instruct",
|
||||||
|
CoreModelId.llama3_1_405b_instruct: "meta/llama-3.1-405b-instruct",
|
||||||
|
# TODO(mf): how do we handle Nemotron models?
|
||||||
|
# "Llama3.1-Nemotron-51B-Instruct": "meta/llama-3.1-nemotron-51b-instruct",
|
||||||
|
CoreModelId.llama3_2_1b_instruct: "meta/llama-3.2-1b-instruct",
|
||||||
|
CoreModelId.llama3_2_3b_instruct: "meta/llama-3.2-3b-instruct",
|
||||||
|
CoreModelId.llama3_2_11b_vision_instruct: "meta/llama-3.2-11b-vision-instruct",
|
||||||
|
CoreModelId.llama3_2_90b_vision_instruct: "meta/llama-3.2-90b-vision-instruct",
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class NVIDIAInferenceAdapter(Inference):
|
||||||
|
def __init__(self, config: NVIDIAConfig) -> None:
|
||||||
|
|
||||||
|
print(f"Initializing NVIDIAInferenceAdapter({config.base_url})...")
|
||||||
|
|
||||||
|
if config.is_hosted:
|
||||||
|
if not config.api_key:
|
||||||
|
raise RuntimeError(
|
||||||
|
"API key is required for hosted NVIDIA NIM. "
|
||||||
|
"Either provide an API key or use a self-hosted NIM."
|
||||||
|
)
|
||||||
|
# elif self._config.api_key:
|
||||||
|
#
|
||||||
|
# we don't raise this warning because a user may have deployed their
|
||||||
|
# self-hosted NIM with an API key requirement.
|
||||||
|
#
|
||||||
|
# warnings.warn(
|
||||||
|
# "API key is not required for self-hosted NVIDIA NIM. "
|
||||||
|
# "Consider removing the api_key from the configuration."
|
||||||
|
# )
|
||||||
|
|
||||||
|
self._config = config
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _headers(self) -> dict:
|
||||||
|
return {
|
||||||
|
b"User-Agent": b"llama-stack: nvidia-inference-adapter",
|
||||||
|
**(
|
||||||
|
{b"Authorization": f"Bearer {self._config.api_key}"}
|
||||||
|
if self._config.api_key
|
||||||
|
else {}
|
||||||
|
),
|
||||||
|
}
|
||||||
|
|
||||||
|
async def list_models(self) -> List[ModelDef]:
|
||||||
|
# TODO(mf): filter by available models
|
||||||
|
return [
|
||||||
|
ModelDef(identifier=model, llama_model=id_)
|
||||||
|
for model, id_ in SUPPORTED_MODELS.items()
|
||||||
|
]
|
||||||
|
|
||||||
|
def completion(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
content: InterleavedTextMedia,
|
||||||
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||||
|
response_format: Optional[ResponseFormat] = None,
|
||||||
|
stream: Optional[bool] = False,
|
||||||
|
logprobs: Optional[LogProbConfig] = None,
|
||||||
|
) -> Union[CompletionResponse, CompletionResponseStreamChunk]:
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
async def embeddings(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
contents: List[InterleavedTextMedia],
|
||||||
|
) -> EmbeddingsResponse:
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
async def chat_completion(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
messages: List[Message],
|
||||||
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||||
|
response_format: Optional[ResponseFormat] = None,
|
||||||
|
tools: Optional[List[ToolDefinition]] = None,
|
||||||
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||||
|
tool_prompt_format: Optional[
|
||||||
|
ToolPromptFormat
|
||||||
|
] = None, # API default is ToolPromptFormat.json, we default to None to detect user input
|
||||||
|
stream: Optional[bool] = False,
|
||||||
|
logprobs: Optional[LogProbConfig] = None,
|
||||||
|
) -> Union[ChatCompletionResponse, ChatCompletionResponseStreamChunk]:
|
||||||
|
if tool_prompt_format:
|
||||||
|
warnings.warn("tool_prompt_format is not supported by NVIDIA NIM, ignoring")
|
||||||
|
|
||||||
|
if stream:
|
||||||
|
raise ValueError("Streamed completions are not supported")
|
||||||
|
|
||||||
|
await check_health(self._config) # this raises errors
|
||||||
|
|
||||||
|
request = ChatCompletionRequest(
|
||||||
|
model=SUPPORTED_MODELS[CoreModelId(model)],
|
||||||
|
messages=messages,
|
||||||
|
sampling_params=sampling_params,
|
||||||
|
tools=tools,
|
||||||
|
tool_choice=tool_choice,
|
||||||
|
tool_prompt_format=tool_prompt_format,
|
||||||
|
stream=stream,
|
||||||
|
logprobs=logprobs,
|
||||||
|
)
|
||||||
|
|
||||||
|
async with httpx.AsyncClient(timeout=self._config.timeout) as client:
|
||||||
|
try:
|
||||||
|
response = await client.post(
|
||||||
|
f"{self._config.base_url}/v1/chat/completions",
|
||||||
|
headers=self._headers,
|
||||||
|
json=convert_chat_completion_request(request, n=1),
|
||||||
|
)
|
||||||
|
except httpx.ReadTimeout as e:
|
||||||
|
raise TimeoutError(
|
||||||
|
f"Request timed out. timeout set to {self._config.timeout}. Use `llama stack configure ...` to adjust it."
|
||||||
|
) from e
|
||||||
|
|
||||||
|
if response.status_code == 401:
|
||||||
|
raise PermissionError(
|
||||||
|
"Unauthorized. Please check your API key, reconfigure, and try again."
|
||||||
|
)
|
||||||
|
|
||||||
|
if response.status_code == 400:
|
||||||
|
raise ValueError(
|
||||||
|
f"Bad request. Please check the request and try again. Detail: {response.text}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if response.status_code == 404:
|
||||||
|
raise ValueError(
|
||||||
|
"Model not found. Please check the model name and try again."
|
||||||
|
)
|
||||||
|
|
||||||
|
assert (
|
||||||
|
response.status_code == 200
|
||||||
|
), f"Failed to get completion: {response.text}"
|
||||||
|
|
||||||
|
# we pass n=1 to get only one completion
|
||||||
|
return parse_completion(response.json()["choices"][0])
|
328
llama_stack/providers/adapters/inference/nvidia/_utils.py
Normal file
328
llama_stack/providers/adapters/inference/nvidia/_utils.py
Normal file
|
@ -0,0 +1,328 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import warnings
|
||||||
|
from typing import Any, Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import httpx
|
||||||
|
from llama_models.llama3.api.datatypes import (
|
||||||
|
CompletionMessage,
|
||||||
|
StopReason,
|
||||||
|
TokenLogProbs,
|
||||||
|
ToolCall,
|
||||||
|
)
|
||||||
|
|
||||||
|
from llama_stack.apis.inference import (
|
||||||
|
ChatCompletionRequest,
|
||||||
|
ChatCompletionResponse,
|
||||||
|
Message,
|
||||||
|
)
|
||||||
|
|
||||||
|
from ._config import NVIDIAConfig
|
||||||
|
|
||||||
|
|
||||||
|
def convert_message(message: Message) -> dict:
|
||||||
|
"""
|
||||||
|
Convert a Message to an OpenAI API-compatible dictionary.
|
||||||
|
"""
|
||||||
|
out_dict = message.dict()
|
||||||
|
# Llama Stack uses role="ipython" for tool call messages, OpenAI uses "tool"
|
||||||
|
if out_dict["role"] == "ipython":
|
||||||
|
out_dict.update(role="tool")
|
||||||
|
|
||||||
|
if "stop_reason" in out_dict:
|
||||||
|
out_dict.update(stop_reason=out_dict["stop_reason"].value)
|
||||||
|
|
||||||
|
# TODO(mf): tool_calls
|
||||||
|
|
||||||
|
return out_dict
|
||||||
|
|
||||||
|
|
||||||
|
async def _get_health(url: str) -> Tuple[bool, bool]:
|
||||||
|
"""
|
||||||
|
Query {url}/v1/health/{live,ready} to check if the server is running and ready
|
||||||
|
|
||||||
|
Args:
|
||||||
|
url (str): URL of the server
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple[bool, bool]: (is_live, is_ready)
|
||||||
|
"""
|
||||||
|
async with httpx.AsyncClient() as client:
|
||||||
|
live = await client.get(f"{url}/v1/health/live")
|
||||||
|
ready = await client.get(f"{url}/v1/health/ready")
|
||||||
|
return live.status_code == 200, ready.status_code == 200
|
||||||
|
|
||||||
|
|
||||||
|
async def check_health(config: NVIDIAConfig) -> None:
|
||||||
|
"""
|
||||||
|
Check if the server is running and ready
|
||||||
|
|
||||||
|
Args:
|
||||||
|
url (str): URL of the server
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
RuntimeError: If the server is not running or ready
|
||||||
|
"""
|
||||||
|
if not config.is_hosted:
|
||||||
|
print("Checking NVIDIA NIM health...")
|
||||||
|
try:
|
||||||
|
is_live, is_ready = await _get_health(config.base_url)
|
||||||
|
if not is_live:
|
||||||
|
raise ConnectionError("NVIDIA NIM is not running")
|
||||||
|
if not is_ready:
|
||||||
|
raise ConnectionError("NVIDIA NIM is not ready")
|
||||||
|
# TODO(mf): should we wait for the server to be ready?
|
||||||
|
except httpx.ConnectError as e:
|
||||||
|
raise ConnectionError(f"Failed to connect to NVIDIA NIM: {e}") from e
|
||||||
|
|
||||||
|
|
||||||
|
def convert_chat_completion_request(
|
||||||
|
request: ChatCompletionRequest,
|
||||||
|
n: int = 1,
|
||||||
|
) -> dict:
|
||||||
|
"""
|
||||||
|
Convert a ChatCompletionRequest to an OpenAI API-compatible dictionary.
|
||||||
|
"""
|
||||||
|
# model -> model
|
||||||
|
# messages -> messages
|
||||||
|
# sampling_params TODO(mattf): review strategy
|
||||||
|
# strategy=greedy -> nvext.top_k = -1, temperature = temperature
|
||||||
|
# strategy=top_p -> nvext.top_k = -1, top_p = top_p
|
||||||
|
# strategy=top_k -> nvext.top_k = top_k
|
||||||
|
# temperature -> temperature
|
||||||
|
# top_p -> top_p
|
||||||
|
# top_k -> nvext.top_k
|
||||||
|
# max_tokens -> max_tokens
|
||||||
|
# repetition_penalty -> nvext.repetition_penalty
|
||||||
|
# tools -> tools
|
||||||
|
# tool_choice ("auto", "required") -> tool_choice
|
||||||
|
# tool_prompt_format -> TBD
|
||||||
|
# stream -> stream
|
||||||
|
# logprobs -> logprobs
|
||||||
|
|
||||||
|
print(f"sampling_params: {request.sampling_params}")
|
||||||
|
|
||||||
|
payload: Dict[str, Any] = dict(
|
||||||
|
model=request.model,
|
||||||
|
messages=[convert_message(message) for message in request.messages],
|
||||||
|
stream=request.stream,
|
||||||
|
nvext={},
|
||||||
|
n=n,
|
||||||
|
)
|
||||||
|
nvext = payload["nvext"]
|
||||||
|
|
||||||
|
if request.tools:
|
||||||
|
payload.update(tools=request.tools)
|
||||||
|
if request.tool_choice:
|
||||||
|
payload.update(
|
||||||
|
tool_choice=request.tool_choice.value
|
||||||
|
) # we cannot include tool_choice w/o tools, server will complain
|
||||||
|
|
||||||
|
if request.logprobs:
|
||||||
|
payload.update(logprobs=True)
|
||||||
|
payload.update(top_logprobs=request.logprobs.top_k)
|
||||||
|
|
||||||
|
if request.sampling_params:
|
||||||
|
nvext.update(repetition_penalty=request.sampling_params.repetition_penalty)
|
||||||
|
|
||||||
|
if request.sampling_params.max_tokens:
|
||||||
|
payload.update(max_tokens=request.sampling_params.max_tokens)
|
||||||
|
|
||||||
|
if request.sampling_params.strategy == "top_p":
|
||||||
|
nvext.update(top_k=-1)
|
||||||
|
payload.update(top_p=request.sampling_params.top_p)
|
||||||
|
elif request.sampling_params.strategy == "top_k":
|
||||||
|
if (
|
||||||
|
request.sampling_params.top_k != -1
|
||||||
|
and request.sampling_params.top_k < 1
|
||||||
|
):
|
||||||
|
warnings.warn("top_k must be -1 or >= 1")
|
||||||
|
nvext.update(top_k=request.sampling_params.top_k)
|
||||||
|
elif request.sampling_params.strategy == "greedy":
|
||||||
|
nvext.update(top_k=-1)
|
||||||
|
payload.update(temperature=request.sampling_params.temperature)
|
||||||
|
|
||||||
|
return payload
|
||||||
|
|
||||||
|
|
||||||
|
def _parse_content(completion: dict) -> str:
|
||||||
|
"""
|
||||||
|
Get the content from an OpenAI completion response.
|
||||||
|
|
||||||
|
OpenAI completion response format -
|
||||||
|
{
|
||||||
|
...
|
||||||
|
"message": {"role": "assistant", "content": ..., ...},
|
||||||
|
...
|
||||||
|
}
|
||||||
|
"""
|
||||||
|
# content is nullable in the OpenAI response, common for tool calls
|
||||||
|
return completion["message"]["content"] or ""
|
||||||
|
|
||||||
|
|
||||||
|
def _parse_stop_reason(completion: dict) -> StopReason:
|
||||||
|
"""
|
||||||
|
Get the StopReason from an OpenAI completion response.
|
||||||
|
|
||||||
|
OpenAI completion response format -
|
||||||
|
{
|
||||||
|
...
|
||||||
|
"finish_reason": "length" or "stop" or "tool_calls",
|
||||||
|
...
|
||||||
|
}
|
||||||
|
"""
|
||||||
|
|
||||||
|
# StopReason options are end_of_turn, end_of_message, out_of_tokens
|
||||||
|
# TODO(mf): is end_of_turn and end_of_message usage correct?
|
||||||
|
stop_reason = StopReason.end_of_turn
|
||||||
|
if completion["finish_reason"] == "length":
|
||||||
|
stop_reason = StopReason.out_of_tokens
|
||||||
|
elif completion["finish_reason"] == "stop":
|
||||||
|
stop_reason = StopReason.end_of_message
|
||||||
|
elif completion["finish_reason"] == "tool_calls":
|
||||||
|
stop_reason = StopReason.end_of_turn
|
||||||
|
return stop_reason
|
||||||
|
|
||||||
|
|
||||||
|
def _parse_tool_calls(completion: dict) -> List[ToolCall]:
|
||||||
|
"""
|
||||||
|
Get the tool calls from an OpenAI completion response.
|
||||||
|
|
||||||
|
OpenAI completion response format -
|
||||||
|
{
|
||||||
|
...,
|
||||||
|
"message": {
|
||||||
|
...,
|
||||||
|
"tool_calls": [
|
||||||
|
{
|
||||||
|
"id": X,
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": Y,
|
||||||
|
"arguments": Z,
|
||||||
|
},
|
||||||
|
}*
|
||||||
|
],
|
||||||
|
},
|
||||||
|
}
|
||||||
|
->
|
||||||
|
[
|
||||||
|
ToolCall(call_id=X, tool_name=Y, arguments=Z),
|
||||||
|
...
|
||||||
|
]
|
||||||
|
"""
|
||||||
|
tool_calls = []
|
||||||
|
if "tool_calls" in completion["message"]:
|
||||||
|
assert isinstance(
|
||||||
|
completion["message"]["tool_calls"], list
|
||||||
|
), "error in server response: tool_calls not a list"
|
||||||
|
for call in completion["message"]["tool_calls"]:
|
||||||
|
assert "id" in call, "error in server response: tool call id not found"
|
||||||
|
assert (
|
||||||
|
"function" in call
|
||||||
|
), "error in server response: tool call function not found"
|
||||||
|
assert (
|
||||||
|
"name" in call["function"]
|
||||||
|
), "error in server response: tool call function name not found"
|
||||||
|
assert (
|
||||||
|
"arguments" in call["function"]
|
||||||
|
), "error in server response: tool call function arguments not found"
|
||||||
|
tool_calls.append(
|
||||||
|
ToolCall(
|
||||||
|
call_id=call["id"],
|
||||||
|
tool_name=call["function"]["name"],
|
||||||
|
arguments=call["function"]["arguments"],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
return tool_calls
|
||||||
|
|
||||||
|
|
||||||
|
def _parse_logprobs(completion: dict) -> Optional[List[TokenLogProbs]]:
|
||||||
|
"""
|
||||||
|
Extract logprobs from OpenAI as a list of TokenLogProbs.
|
||||||
|
|
||||||
|
OpenAI completion response format -
|
||||||
|
{
|
||||||
|
...
|
||||||
|
"logprobs": {
|
||||||
|
content: [
|
||||||
|
{
|
||||||
|
...,
|
||||||
|
top_logprobs: [{token: X, logprob: Y, bytes: [...]}+]
|
||||||
|
}+
|
||||||
|
]
|
||||||
|
},
|
||||||
|
...
|
||||||
|
}
|
||||||
|
->
|
||||||
|
[
|
||||||
|
TokenLogProbs(
|
||||||
|
logprobs_by_token={X: Y, ...}
|
||||||
|
),
|
||||||
|
...
|
||||||
|
]
|
||||||
|
"""
|
||||||
|
if not (logprobs := completion.get("logprobs")):
|
||||||
|
return None
|
||||||
|
|
||||||
|
return [
|
||||||
|
TokenLogProbs(
|
||||||
|
logprobs_by_token={
|
||||||
|
logprobs["token"]: logprobs["logprob"]
|
||||||
|
for logprobs in content["top_logprobs"]
|
||||||
|
}
|
||||||
|
)
|
||||||
|
for content in logprobs["content"]
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def parse_completion(
|
||||||
|
completion: dict,
|
||||||
|
) -> ChatCompletionResponse:
|
||||||
|
"""
|
||||||
|
Parse an OpenAI completion response into a CompletionMessage and logprobs.
|
||||||
|
|
||||||
|
OpenAI completion response format -
|
||||||
|
{
|
||||||
|
"message": {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": ...,
|
||||||
|
"tool_calls": [
|
||||||
|
{
|
||||||
|
...
|
||||||
|
"id": ...,
|
||||||
|
"function": {
|
||||||
|
"name": ...,
|
||||||
|
"arguments": ...,
|
||||||
|
},
|
||||||
|
}*
|
||||||
|
]?,
|
||||||
|
"finish_reason": ...,
|
||||||
|
"logprobs": {
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
...,
|
||||||
|
"top_logprobs": [{"token": ..., "logprob": ..., ...}+]
|
||||||
|
}+
|
||||||
|
]
|
||||||
|
}?
|
||||||
|
}
|
||||||
|
"""
|
||||||
|
assert "message" in completion, "error in server response: message not found"
|
||||||
|
assert (
|
||||||
|
"finish_reason" in completion
|
||||||
|
), "error in server response: finish_reason not found"
|
||||||
|
|
||||||
|
return ChatCompletionResponse(
|
||||||
|
completion_message=CompletionMessage(
|
||||||
|
content=_parse_content(completion),
|
||||||
|
stop_reason=_parse_stop_reason(completion),
|
||||||
|
tool_calls=_parse_tool_calls(completion),
|
||||||
|
),
|
||||||
|
logprobs=_parse_logprobs(completion),
|
||||||
|
)
|
|
@ -140,6 +140,15 @@ def available_providers() -> List[ProviderSpec]:
|
||||||
config_class="llama_stack.providers.adapters.inference.databricks.DatabricksImplConfig",
|
config_class="llama_stack.providers.adapters.inference.databricks.DatabricksImplConfig",
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
|
remote_provider_spec(
|
||||||
|
api=Api.inference,
|
||||||
|
adapter=AdapterSpec(
|
||||||
|
adapter_type="nvidia",
|
||||||
|
pip_packages=[], # TODO(mf): need to specify httpx if it's already a llama-stack dep?
|
||||||
|
module="llama_stack.providers.adapters.inference.nvidia",
|
||||||
|
config_class="llama_stack.providers.adapters.inference.nvidia.NVIDIAConfig",
|
||||||
|
),
|
||||||
|
),
|
||||||
InlineProviderSpec(
|
InlineProviderSpec(
|
||||||
api=Api.inference,
|
api=Api.inference,
|
||||||
provider_type="vllm",
|
provider_type="vllm",
|
||||||
|
|
26
tests/nvidia/README.md
Normal file
26
tests/nvidia/README.md
Normal file
|
@ -0,0 +1,26 @@
|
||||||
|
# NVIDIA tests
|
||||||
|
|
||||||
|
## Running tests
|
||||||
|
|
||||||
|
**Install the required dependencies:**
|
||||||
|
```bash
|
||||||
|
pip install pytest pytest-asyncio pytest-httpx
|
||||||
|
```
|
||||||
|
|
||||||
|
There are three modes for testing:
|
||||||
|
|
||||||
|
1. Unit tests - this mode checks the provider functionality and does not require a network connection or running distribution
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pytest tests/nvidia/unit
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Integration tests against hosted preview APIs - this mode checks the provider functionality against a live system and requires an API key. Get an API key by 0. going to https://build.nvidia.com, 1. selecting a Llama model, e.g. https://build.nvidia.com/meta/llama-3_1-8b-instruct, and 2. clicking "Get API Key". Store the API key in the `NVIDIA_API_KEY` environment variable.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export NVIDIA_API_KEY=...
|
||||||
|
|
||||||
|
pytest tests/nvidia/integration --base-url https://integrate.api.nvidia.com
|
||||||
|
```
|
||||||
|
|
||||||
|
3. Integration tests against a running distribution - this mode checks the provider functionality in the context of a running distribution. This involves running a local NIM, see https://build.nvidia.com/meta/llama-3_1-8b-instruct?snippet_tab=Docker, and creating & configuring a distribution to use it. Details to come.
|
67
tests/nvidia/integration/conftest.py
Normal file
67
tests/nvidia/integration/conftest.py
Normal file
|
@ -0,0 +1,67 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from llama_stack.apis.inference import Inference
|
||||||
|
from llama_stack.providers.adapters.inference.nvidia import (
|
||||||
|
get_adapter_impl,
|
||||||
|
NVIDIAConfig,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def pytest_collection_modifyitems(config, items):
|
||||||
|
"""
|
||||||
|
Skip all integration tests if NVIDIA_API_KEY is not set and --base-url
|
||||||
|
includes "https://integrate.api.nvidia.com". It is needed to access the
|
||||||
|
hosted preview APIs.
|
||||||
|
"""
|
||||||
|
if "integrate.api.nvidia.com" in config.getoption(
|
||||||
|
"--base-url"
|
||||||
|
) and not os.environ.get("NVIDIA_API_KEY"):
|
||||||
|
skip_nvidia = pytest.mark.skip(
|
||||||
|
reason="NVIDIA_API_KEY environment variable must be set to access integrate.api.nvidia.com"
|
||||||
|
)
|
||||||
|
for item in items:
|
||||||
|
item.add_marker(skip_nvidia)
|
||||||
|
|
||||||
|
|
||||||
|
def pytest_addoption(parser):
|
||||||
|
parser.addoption(
|
||||||
|
"--base-url",
|
||||||
|
action="store",
|
||||||
|
default="http://localhost:8000",
|
||||||
|
help="Base URL for the tests",
|
||||||
|
)
|
||||||
|
parser.addoption(
|
||||||
|
"--model",
|
||||||
|
action="store",
|
||||||
|
default="Llama-3-8B-Instruct",
|
||||||
|
help="Model option for the tests",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def base_url(request):
|
||||||
|
return request.config.getoption("--base-url")
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def model(request):
|
||||||
|
return request.config.getoption("--model")
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def client(base_url: str) -> Inference:
|
||||||
|
return get_adapter_impl(
|
||||||
|
NVIDIAConfig(
|
||||||
|
base_url=base_url,
|
||||||
|
api_key=os.environ.get("NVIDIA_API_KEY"),
|
||||||
|
),
|
||||||
|
{},
|
||||||
|
)
|
117
tests/nvidia/integration/test_inference.py
Normal file
117
tests/nvidia/integration/test_inference.py
Normal file
|
@ -0,0 +1,117 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import itertools
|
||||||
|
from typing import Generator, List, Tuple
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from llama_stack.apis.inference import (
|
||||||
|
ChatCompletionResponse,
|
||||||
|
CompletionMessage,
|
||||||
|
Inference,
|
||||||
|
Message,
|
||||||
|
StopReason,
|
||||||
|
SystemMessage,
|
||||||
|
ToolResponseMessage,
|
||||||
|
UserMessage,
|
||||||
|
)
|
||||||
|
from llama_stack.providers.adapters.inference.nvidia import (
|
||||||
|
get_adapter_impl,
|
||||||
|
NVIDIAConfig,
|
||||||
|
)
|
||||||
|
|
||||||
|
pytestmark = pytest.mark.asyncio
|
||||||
|
|
||||||
|
|
||||||
|
# TODO(mf): test bad creds raises PermissionError
|
||||||
|
# TODO(mf): test bad params, e.g. max_tokens=0 raises ValidationError
|
||||||
|
# TODO(mf): test bad model name raises ValueError
|
||||||
|
# TODO(mf): test short timeout raises TimeoutError
|
||||||
|
# TODO(mf): new file, test cli model listing
|
||||||
|
# TODO(mf): test streaming
|
||||||
|
# TODO(mf): test tool calls w/ tool_choice
|
||||||
|
|
||||||
|
|
||||||
|
def message_combinations(
|
||||||
|
length: int,
|
||||||
|
) -> Generator[Tuple[List[Message], str], None, None]:
|
||||||
|
"""
|
||||||
|
Generate all possible combinations of message types of given length.
|
||||||
|
"""
|
||||||
|
message_types = [
|
||||||
|
UserMessage,
|
||||||
|
SystemMessage,
|
||||||
|
ToolResponseMessage,
|
||||||
|
CompletionMessage,
|
||||||
|
]
|
||||||
|
for count in range(1, length + 1):
|
||||||
|
for combo in itertools.product(message_types, repeat=count):
|
||||||
|
messages = []
|
||||||
|
for i, msg in enumerate(combo):
|
||||||
|
if msg == ToolResponseMessage:
|
||||||
|
messages.append(
|
||||||
|
msg(
|
||||||
|
content=f"Message {i + 1}",
|
||||||
|
call_id=f"call_{i + 1}",
|
||||||
|
tool_name=f"tool_{i + 1}",
|
||||||
|
)
|
||||||
|
)
|
||||||
|
elif msg == CompletionMessage:
|
||||||
|
messages.append(
|
||||||
|
msg(content=f"Message {i + 1}", stop_reason="end_of_message")
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
messages.append(msg(content=f"Message {i + 1}"))
|
||||||
|
id_str = "-".join([msg.__name__ for msg in combo])
|
||||||
|
yield messages, id_str
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("combo", message_combinations(3), ids=lambda x: x[1])
|
||||||
|
async def test_chat_completion_messages(
|
||||||
|
client: Inference,
|
||||||
|
model: str,
|
||||||
|
combo: Tuple[List[Message], str],
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Test the chat completion endpoint with different message combinations.
|
||||||
|
"""
|
||||||
|
client = await client
|
||||||
|
messages, _ = combo
|
||||||
|
|
||||||
|
response = await client.chat_completion(
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
assert isinstance(response, ChatCompletionResponse)
|
||||||
|
assert isinstance(response.completion_message.content, str)
|
||||||
|
# we're not testing accuracy, so no assertions on the result.completion_message.content
|
||||||
|
assert response.completion_message.role == "assistant"
|
||||||
|
assert isinstance(response.completion_message.stop_reason, StopReason)
|
||||||
|
assert response.completion_message.tool_calls == []
|
||||||
|
|
||||||
|
|
||||||
|
async def test_bad_base_url(
|
||||||
|
model: str,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Test that a bad base_url raises a ConnectionError.
|
||||||
|
"""
|
||||||
|
client = await get_adapter_impl(
|
||||||
|
NVIDIAConfig(
|
||||||
|
base_url="http://localhost:32123",
|
||||||
|
),
|
||||||
|
{},
|
||||||
|
)
|
||||||
|
|
||||||
|
with pytest.raises(ConnectionError):
|
||||||
|
await client.chat_completion(
|
||||||
|
model=model,
|
||||||
|
messages=[UserMessage(content="Hello")],
|
||||||
|
stream=False,
|
||||||
|
)
|
73
tests/nvidia/unit/conftest.py
Normal file
73
tests/nvidia/unit/conftest.py
Normal file
|
@ -0,0 +1,73 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from llama_stack.apis.inference import Inference
|
||||||
|
from llama_stack.providers.adapters.inference.nvidia import (
|
||||||
|
get_adapter_impl,
|
||||||
|
NVIDIAConfig,
|
||||||
|
)
|
||||||
|
from pytest_httpx import HTTPXMock
|
||||||
|
|
||||||
|
pytestmark = pytest.mark.asyncio
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def base_url():
|
||||||
|
return "http://endpoint.mocked"
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def client(base_url: str) -> Inference:
|
||||||
|
return get_adapter_impl(
|
||||||
|
NVIDIAConfig(
|
||||||
|
base_url=base_url,
|
||||||
|
api_key=os.environ.get("NVIDIA_API_KEY"),
|
||||||
|
),
|
||||||
|
{},
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def mock_health(
|
||||||
|
httpx_mock: HTTPXMock,
|
||||||
|
base_url: str,
|
||||||
|
) -> HTTPXMock:
|
||||||
|
for path in [
|
||||||
|
"/v1/health/live",
|
||||||
|
"/v1/health/ready",
|
||||||
|
]:
|
||||||
|
httpx_mock.add_response(
|
||||||
|
url=f"{base_url}{path}",
|
||||||
|
status_code=200,
|
||||||
|
)
|
||||||
|
return httpx_mock
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def mock_chat_completion(httpx_mock: HTTPXMock, base_url: str) -> HTTPXMock:
|
||||||
|
httpx_mock.add_response(
|
||||||
|
url=f"{base_url}/v1/chat/completions",
|
||||||
|
json={
|
||||||
|
"id": "mock-id",
|
||||||
|
"created": 1234567890,
|
||||||
|
"object": "chat.completion",
|
||||||
|
"model": "mock-model",
|
||||||
|
"choices": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"message": {"role": "assistant", "content": "WORKED"},
|
||||||
|
"finish_reason": "length",
|
||||||
|
}
|
||||||
|
],
|
||||||
|
},
|
||||||
|
status_code=200,
|
||||||
|
)
|
||||||
|
|
||||||
|
return httpx_mock
|
203
tests/nvidia/unit/test_chat_completion.py
Normal file
203
tests/nvidia/unit/test_chat_completion.py
Normal file
|
@ -0,0 +1,203 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
from llama_models.llama3.api.datatypes import TokenLogProbs, ToolCall
|
||||||
|
|
||||||
|
from llama_stack.apis.inference import Inference
|
||||||
|
from pytest_httpx import HTTPXMock
|
||||||
|
|
||||||
|
pytestmark = pytest.mark.asyncio
|
||||||
|
|
||||||
|
|
||||||
|
async def test_content(
|
||||||
|
mock_health: HTTPXMock,
|
||||||
|
httpx_mock: HTTPXMock,
|
||||||
|
client: Inference,
|
||||||
|
base_url: str,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Test that response content makes it through to the completion message.
|
||||||
|
"""
|
||||||
|
httpx_mock.add_response(
|
||||||
|
url=f"{base_url}/v1/chat/completions",
|
||||||
|
json={
|
||||||
|
"id": "mock-id",
|
||||||
|
"created": 1234567890,
|
||||||
|
"object": "chat.completion",
|
||||||
|
"model": "mock-model",
|
||||||
|
"choices": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"message": {"role": "assistant", "content": "RESPONSE"},
|
||||||
|
"finish_reason": "length",
|
||||||
|
}
|
||||||
|
],
|
||||||
|
},
|
||||||
|
status_code=200,
|
||||||
|
)
|
||||||
|
|
||||||
|
client = await client
|
||||||
|
|
||||||
|
response = await client.chat_completion(
|
||||||
|
model="Llama-3-8B-Instruct",
|
||||||
|
messages=[{"role": "user", "content": "BOGUS"}],
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
assert response.completion_message.content == "RESPONSE"
|
||||||
|
|
||||||
|
|
||||||
|
async def test_logprobs(
|
||||||
|
mock_health: HTTPXMock,
|
||||||
|
httpx_mock: HTTPXMock,
|
||||||
|
client: Inference,
|
||||||
|
base_url: str,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Test that logprobs are parsed correctly.
|
||||||
|
"""
|
||||||
|
httpx_mock.add_response(
|
||||||
|
url=f"{base_url}/v1/chat/completions",
|
||||||
|
json={
|
||||||
|
"id": "mock-id",
|
||||||
|
"object": "chat.completion",
|
||||||
|
"created": 1234567890,
|
||||||
|
"model": "mock-model",
|
||||||
|
"choices": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"message": {"role": "assistant", "content": "Hello there"},
|
||||||
|
"logprobs": {
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"token": "Hello",
|
||||||
|
"logprob": -0.1,
|
||||||
|
"bytes": [72, 101, 108, 108, 111],
|
||||||
|
"top_logprobs": [
|
||||||
|
{"token": "Hello", "logprob": -0.1},
|
||||||
|
{"token": "Hi", "logprob": -1.2},
|
||||||
|
{"token": "Greetings", "logprob": -2.1},
|
||||||
|
],
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"token": "there",
|
||||||
|
"logprob": -0.2,
|
||||||
|
"bytes": [116, 104, 101, 114, 101],
|
||||||
|
"top_logprobs": [
|
||||||
|
{"token": "there", "logprob": -0.2},
|
||||||
|
{"token": "here", "logprob": -1.3},
|
||||||
|
{"token": "where", "logprob": -2.2},
|
||||||
|
],
|
||||||
|
},
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"finish_reason": "length",
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"usage": {"prompt_tokens": 1, "completion_tokens": 1, "total_tokens": 2},
|
||||||
|
},
|
||||||
|
status_code=200,
|
||||||
|
)
|
||||||
|
|
||||||
|
client = await client
|
||||||
|
|
||||||
|
response = await client.chat_completion(
|
||||||
|
model="Llama-3-8B-Instruct",
|
||||||
|
messages=[{"role": "user", "content": "Hello"}],
|
||||||
|
logprobs={"top_k": 3},
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
assert response.logprobs == [
|
||||||
|
TokenLogProbs(
|
||||||
|
logprobs_by_token={
|
||||||
|
"Hello": -0.1,
|
||||||
|
"Hi": -1.2,
|
||||||
|
"Greetings": -2.1,
|
||||||
|
}
|
||||||
|
),
|
||||||
|
TokenLogProbs(
|
||||||
|
logprobs_by_token={
|
||||||
|
"there": -0.2,
|
||||||
|
"here": -1.3,
|
||||||
|
"where": -2.2,
|
||||||
|
}
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
async def test_tools(
|
||||||
|
mock_health: HTTPXMock,
|
||||||
|
httpx_mock: HTTPXMock,
|
||||||
|
client: Inference,
|
||||||
|
base_url: str,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Test that tools are passed correctly.
|
||||||
|
"""
|
||||||
|
httpx_mock.add_response(
|
||||||
|
url=f"{base_url}/v1/chat/completions",
|
||||||
|
json={
|
||||||
|
"id": "mock-id",
|
||||||
|
"object": "chat.completion",
|
||||||
|
"created": 1234567890,
|
||||||
|
"model": "mock-model",
|
||||||
|
"choices": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"message": {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": None,
|
||||||
|
"tool_calls": [
|
||||||
|
{
|
||||||
|
"id": "tool-id",
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": "magic",
|
||||||
|
"arguments": {"input": 3},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "tool-id!",
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": "magic!",
|
||||||
|
"arguments": {"input": 42},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
],
|
||||||
|
},
|
||||||
|
"logprobs": None,
|
||||||
|
"finish_reason": "tool_calls",
|
||||||
|
}
|
||||||
|
],
|
||||||
|
},
|
||||||
|
status_code=200,
|
||||||
|
)
|
||||||
|
|
||||||
|
client = await client
|
||||||
|
|
||||||
|
response = await client.chat_completion(
|
||||||
|
model="Llama-3-8B-Instruct",
|
||||||
|
messages=[{"role": "user", "content": "Hello"}],
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
assert response.completion_message.tool_calls == [
|
||||||
|
ToolCall(
|
||||||
|
call_id="tool-id",
|
||||||
|
tool_name="magic",
|
||||||
|
arguments={"input": 3},
|
||||||
|
),
|
||||||
|
ToolCall(
|
||||||
|
call_id="tool-id!",
|
||||||
|
tool_name="magic!",
|
||||||
|
arguments={"input": 42},
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
# TODO(mf): test stream=True for each case
|
35
tests/nvidia/unit/test_health.py
Normal file
35
tests/nvidia/unit/test_health.py
Normal file
|
@ -0,0 +1,35 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from llama_stack.apis.inference import Inference
|
||||||
|
from pytest_httpx import HTTPXMock
|
||||||
|
|
||||||
|
pytestmark = pytest.mark.asyncio
|
||||||
|
|
||||||
|
|
||||||
|
async def test_chat_completion(
|
||||||
|
mock_health: HTTPXMock,
|
||||||
|
mock_chat_completion: HTTPXMock,
|
||||||
|
client: Inference,
|
||||||
|
base_url: str,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Test that health endpoints are checked when chat_completion is called.
|
||||||
|
"""
|
||||||
|
client = await client
|
||||||
|
|
||||||
|
await client.chat_completion(
|
||||||
|
model="Llama-3-8B-Instruct",
|
||||||
|
messages=[{"role": "user", "content": "BOGUS"}],
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# TODO(mf): test stream=True for each case
|
||||||
|
# TODO(mf): test completion
|
||||||
|
# TODO(mf): test embedding
|
11
tests/nvidia/unit/test_import.py
Normal file
11
tests/nvidia/unit/test_import.py
Normal file
|
@ -0,0 +1,11 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from llama_stack.providers.adapters.inference.nvidia import __all__
|
||||||
|
|
||||||
|
|
||||||
|
def test_import():
|
||||||
|
assert set(__all__) == {"get_adapter_impl", "NVIDIAConfig"}
|
Loading…
Add table
Add a link
Reference in a new issue