feat(vector-io): add OpenGauss vector database provider

Implement OpenGauss vector database integration for Llama Stack with the following features:
- Add OpenGaussVectorIOAdapter for vector storage and retrieval
- Support native vector similarity search operations
- Provide configuration template for easy setup
- Add comprehensive unit tests
- Align with the latest Llama Stack provider architecture, including KVStore and OpenAI Vector Store Mixin.

The implementation allows Llama Stack users to leverage OpenGauss as an
enterprise-grade vector database for RAG applications.
This commit is contained in:
qifengleqifengle 2025-07-14 16:50:29 +08:00
parent eb07a0f86a
commit 35a0a6cb7b
14 changed files with 802 additions and 15 deletions

View file

@ -4,7 +4,9 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import random
from unittest.mock import AsyncMock
import numpy as np
import pytest
@ -22,6 +24,8 @@ from llama_stack.providers.inline.vector_io.sqlite_vec import SQLiteVectorIOConf
from llama_stack.providers.inline.vector_io.sqlite_vec.sqlite_vec import SQLiteVecIndex, SQLiteVecVectorIOAdapter
from llama_stack.providers.remote.vector_io.chroma.chroma import ChromaIndex, ChromaVectorIOAdapter, maybe_await
from llama_stack.providers.remote.vector_io.milvus.milvus import MilvusIndex, MilvusVectorIOAdapter
from llama_stack.providers.remote.vector_io.opengauss.config import OpenGaussVectorIOConfig
from llama_stack.providers.remote.vector_io.opengauss.opengauss import OpenGaussIndex, OpenGaussVectorIOAdapter
from llama_stack.providers.remote.vector_io.qdrant.qdrant import QdrantVectorIOAdapter
EMBEDDING_DIMENSION = 384
@ -29,7 +33,7 @@ COLLECTION_PREFIX = "test_collection"
MILVUS_ALIAS = "test_milvus"
@pytest.fixture(params=["milvus", "sqlite_vec", "faiss", "chroma"])
@pytest.fixture(params=["milvus", "sqlite_vec", "faiss", "chroma", "opengauss"])
def vector_provider(request):
return request.param
@ -333,6 +337,92 @@ async def qdrant_vec_index(qdrant_vec_db_path, embedding_dimension):
await index.delete()
@pytest.fixture
def opengauss_vec_db_path():
return {
"host": "localhost",
"port": 5432,
"db": "test_db",
"user": "test_user",
"password": "test_password",
}
@pytest.fixture
async def opengauss_vec_index(embedding_dimension, opengauss_vec_db_path):
mock_conn = AsyncMock()
mock_cursor = AsyncMock()
mock_conn.cursor.return_value.__enter__.return_value = mock_cursor
vector_db = VectorDB(
identifier=f"test_opengauss_db_{np.random.randint(1e6)}",
provider_id="opengauss",
embedding_model="test_model",
embedding_dimension=embedding_dimension,
)
if all(
os.getenv(var)
for var in ["OPENGAUSS_HOST", "OPENGAUSS_PORT", "OPENGAUSS_DB", "OPENGAUSS_USER", "OPENGAUSS_PASSWORD"]
):
import psycopg2
real_conn = psycopg2.connect(**opengauss_vec_db_path)
real_conn.autocommit = True
index = OpenGaussIndex(vector_db, embedding_dimension, real_conn)
yield index
await index.delete()
real_conn.close()
else:
index = OpenGaussIndex(vector_db, embedding_dimension, mock_conn)
yield index
@pytest.fixture
async def opengauss_vec_adapter(mock_inference_api, embedding_dimension, tmp_path_factory):
temp_dir = tmp_path_factory.getbasetemp()
kv_db_path = str(temp_dir / f"opengauss_kv_{np.random.randint(1e6)}.db")
config = OpenGaussVectorIOConfig(
host=os.getenv("OPENGAUSS_HOST", "localhost"),
port=int(os.getenv("OPENGAUSS_PORT", "5432")),
db=os.getenv("OPENGAUSS_DB", "test_db"),
user=os.getenv("OPENGAUSS_USER", "test_user"),
password=os.getenv("OPENGAUSS_PASSWORD", "test_password"),
kvstore=SqliteKVStoreConfig(db_path=kv_db_path),
)
if all(
os.getenv(var)
for var in ["OPENGAUSS_HOST", "OPENGAUSS_PORT", "OPENGAUSS_DB", "OPENGAUSS_USER", "OPENGAUSS_PASSWORD"]
):
adapter = OpenGaussVectorIOAdapter(config, mock_inference_api)
await adapter.initialize()
collection_id = f"opengauss_test_collection_{np.random.randint(1e6)}"
await adapter.register_vector_db(
VectorDB(
identifier=collection_id,
provider_id="opengauss",
embedding_model="test_model",
embedding_dimension=embedding_dimension,
)
)
adapter.test_collection_id = collection_id
yield adapter
try:
await adapter.unregister_vector_db(collection_id)
except Exception:
pass
await adapter.shutdown()
if os.path.exists(kv_db_path):
os.remove(kv_db_path)
else:
pytest.skip("OpenGauss connection not available for integration testing")
@pytest.fixture
def vector_io_adapter(vector_provider, request):
"""Returns the appropriate vector IO adapter based on the provider parameter."""
@ -342,6 +432,7 @@ def vector_io_adapter(vector_provider, request):
"sqlite_vec": "sqlite_vec_adapter",
"chroma": "chroma_vec_adapter",
"qdrant": "qdrant_vec_adapter",
"opengauss": "opengauss_vec_adapter",
}
return request.getfixturevalue(vector_provider_dict[vector_provider])

View file

@ -0,0 +1,215 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import random
from unittest.mock import AsyncMock
import numpy as np
import pytest
from llama_stack.apis.inference import EmbeddingsResponse, Inference
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse
from llama_stack.providers.remote.vector_io.opengauss.config import (
OpenGaussVectorIOConfig,
)
from llama_stack.providers.remote.vector_io.opengauss.opengauss import (
OpenGaussIndex,
OpenGaussVectorIOAdapter,
)
from llama_stack.providers.utils.kvstore.config import (
SqliteKVStoreConfig,
)
# Skip all tests in this file if the required environment variables are not set.
pytestmark = pytest.mark.skipif(
not all(
os.getenv(var)
for var in [
"OPENGAUSS_HOST",
"OPENGAUSS_PORT",
"OPENGAUSS_DB",
"OPENGAUSS_USER",
"OPENGAUSS_PASSWORD",
]
),
reason="OpenGauss connection environment variables not set",
)
@pytest.fixture(scope="session")
def embedding_dimension() -> int:
return 128
@pytest.fixture
def sample_chunks():
"""Provides a list of sample chunks for testing."""
return [
Chunk(
content="The sky is blue.",
metadata={"document_id": "doc1", "topic": "nature"},
),
Chunk(
content="An apple a day keeps the doctor away.",
metadata={"document_id": "doc2", "topic": "health"},
),
Chunk(
content="Quantum computing is a new frontier.",
metadata={"document_id": "doc3", "topic": "technology"},
),
]
@pytest.fixture
def sample_embeddings(embedding_dimension, sample_chunks):
"""Provides a deterministic set of embeddings for the sample chunks."""
# Use a fixed seed for reproducibility
rng = np.random.default_rng(42)
return rng.random((len(sample_chunks), embedding_dimension), dtype=np.float32)
@pytest.fixture
def mock_inference_api(sample_embeddings):
"""Mocks the inference API to return dummy embeddings."""
mock_api = AsyncMock(spec=Inference)
mock_api.embeddings = AsyncMock(return_value=EmbeddingsResponse(embeddings=sample_embeddings.tolist()))
return mock_api
@pytest.fixture
def vector_db(embedding_dimension):
"""Provides a sample VectorDB object for registration."""
return VectorDB(
identifier=f"test_db_{random.randint(1, 10000)}",
embedding_model="test_embedding_model",
embedding_dimension=embedding_dimension,
provider_id="opengauss",
)
@pytest.fixture
async def opengauss_connection():
"""Creates and manages a connection to the OpenGauss database."""
import psycopg2
conn = psycopg2.connect(
host=os.getenv("OPENGAUSS_HOST"),
port=int(os.getenv("OPENGAUSS_PORT")),
database=os.getenv("OPENGAUSS_DB"),
user=os.getenv("OPENGAUSS_USER"),
password=os.getenv("OPENGAUSS_PASSWORD"),
)
conn.autocommit = True
yield conn
conn.close()
@pytest.fixture
async def opengauss_index(opengauss_connection, vector_db):
"""Fixture to create and clean up an OpenGaussIndex instance."""
index = OpenGaussIndex(vector_db, vector_db.embedding_dimension, opengauss_connection)
yield index
await index.delete()
@pytest.fixture
async def opengauss_adapter(mock_inference_api):
"""Fixture to set up and tear down the OpenGaussVectorIOAdapter."""
config = OpenGaussVectorIOConfig(
host=os.getenv("OPENGAUSS_HOST"),
port=int(os.getenv("OPENGAUSS_PORT")),
db=os.getenv("OPENGAUSS_DB"),
user=os.getenv("OPENGAUSS_USER"),
password=os.getenv("OPENGAUSS_PASSWORD"),
kvstore=SqliteKVStoreConfig(db_name="opengauss_test.db"),
)
adapter = OpenGaussVectorIOAdapter(config, mock_inference_api)
await adapter.initialize()
yield adapter
if adapter.conn and not adapter.conn.closed:
for db_id in list(adapter.cache.keys()):
try:
await adapter.unregister_vector_db(db_id)
except Exception as e:
print(f"Error during cleanup of {db_id}: {e}")
await adapter.shutdown()
# Clean up the sqlite db file
if os.path.exists("opengauss_test.db"):
os.remove("opengauss_test.db")
class TestOpenGaussIndex:
async def test_add_and_query_vector(self, opengauss_index, sample_chunks, sample_embeddings):
"""Test adding chunks with embeddings and querying for the most similar one."""
await opengauss_index.add_chunks(sample_chunks, sample_embeddings)
# Query with the embedding of the first chunk
query_embedding = sample_embeddings[0]
response = await opengauss_index.query_vector(query_embedding, k=1, score_threshold=0.0)
assert isinstance(response, QueryChunksResponse)
assert len(response.chunks) == 1
assert response.chunks[0].content == sample_chunks[0].content
# The distance to itself should be 0, resulting in infinite score
assert response.scores[0] == float("inf")
class TestOpenGaussVectorIOAdapter:
async def test_initialization(self, opengauss_adapter):
"""Test that the adapter initializes and connects to the database."""
assert opengauss_adapter.conn is not None
assert not opengauss_adapter.conn.closed
async def test_register_and_unregister_vector_db(self, opengauss_adapter, vector_db):
"""Test the registration and unregistration of a vector database."""
await opengauss_adapter.register_vector_db(vector_db)
assert vector_db.identifier in opengauss_adapter.cache
table_name = opengauss_adapter.cache[vector_db.identifier].index.table_name
with opengauss_adapter.conn.cursor() as cur:
cur.execute(
"SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = %s);",
(table_name,),
)
assert cur.fetchone()[0]
await opengauss_adapter.unregister_vector_db(vector_db.identifier)
assert vector_db.identifier not in opengauss_adapter.cache
with opengauss_adapter.conn.cursor() as cur:
cur.execute(
"SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = %s);",
(table_name,),
)
assert not cur.fetchone()[0]
async def test_adapter_end_to_end_query(self, opengauss_adapter, vector_db, sample_chunks):
"""
Tests the full adapter flow: text query -> embedding generation -> vector search.
"""
# 1. Register the DB and insert chunks. The adapter will use the mocked
# inference_api to generate embeddings for these chunks.
await opengauss_adapter.register_vector_db(vector_db)
await opengauss_adapter.insert_chunks(vector_db.identifier, sample_chunks)
# 2. The user query is a text string.
query_text = "What is the color of the sky?"
# 3. The adapter will now internally call the (mocked) inference_api
# to get an embedding for the query_text.
response = await opengauss_adapter.query_chunks(vector_db.identifier, query_text)
# 4. Assertions
assert isinstance(response, QueryChunksResponse)
assert len(response.chunks) > 0
# Because the mocked inference_api returns random embeddings, we can't
# deterministically know which chunk is "closest". However, in a real
# integration test with a real model, this assertion would be more specific.
# For this unit test, we just confirm that the process completes and returns data.
assert response.chunks[0].content in [c.content for c in sample_chunks]