chore(tests): fix responses and vector_io tests (#3119)

Some fixes to MCP tests. And a bunch of fixes for Vector providers.

I also enabled a bunch of Vector IO tests to be used with
`LlamaStackLibraryClient`

## Test Plan

Run Responses tests with llama stack library client:
```
pytest -s -v tests/integration/non_ci/responses/ --stack-config=server:starter \
   --text-model openai/gpt-4o \
  --embedding-model=sentence-transformers/all-MiniLM-L6-v2 \
  -k "client_with_models"
```

Do the same with `-k openai_client`

The rest should be taken care of by CI.
This commit is contained in:
Ashwin Bharambe 2025-08-12 16:15:53 -07:00 committed by GitHub
parent 1721aafc1f
commit 3d90117891
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
25 changed files with 175 additions and 112 deletions

View file

@ -91,7 +91,7 @@ def get_provider_dependencies(
def print_pip_install_help(config: BuildConfig):
normal_deps, special_deps = get_provider_dependencies(config)
normal_deps, special_deps, _ = get_provider_dependencies(config)
cprint(
f"Please install needed dependencies using the following commands:\n\nuv pip install {' '.join(normal_deps)}",

View file

@ -65,7 +65,7 @@ from llama_stack.providers.datatypes import HealthResponse, HealthStatus, Routin
from llama_stack.providers.utils.inference.inference_store import InferenceStore
from llama_stack.providers.utils.telemetry.tracing import get_current_span
logger = get_logger(name=__name__, category="core")
logger = get_logger(name=__name__, category="inference")
class InferenceRouter(Inference):
@ -854,4 +854,5 @@ class InferenceRouter(Inference):
model=model.identifier,
object="chat.completion",
)
logger.debug(f"InferenceRouter.completion_response: {final_response}")
await self.store.store_chat_completion(final_response, messages)

View file

@ -63,6 +63,8 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
async def get_provider_impl(self, model_id: str) -> Any:
model = await lookup_model(self, model_id)
if model.provider_id not in self.impls_by_provider_id:
raise ValueError(f"Provider {model.provider_id} not found in the routing table")
return self.impls_by_provider_id[model.provider_id]
async def register_model(

View file

@ -32,6 +32,7 @@ CATEGORIES = [
"tools",
"client",
"telemetry",
"openai_responses",
]
# Initialize category levels with default level

View file

@ -236,6 +236,7 @@ class ChatFormat:
arguments_json=json.dumps(tool_arguments),
)
)
content = ""
return RawMessage(
role="assistant",

View file

@ -488,8 +488,12 @@ class OpenAIResponsesImpl:
# Convert collected chunks to complete response
if chat_response_tool_calls:
tool_calls = [chat_response_tool_calls[i] for i in sorted(chat_response_tool_calls.keys())]
# when there are tool calls, we need to clear the content
chat_response_content = []
else:
tool_calls = None
assistant_message = OpenAIAssistantMessageParam(
content="".join(chat_response_content),
tool_calls=tool_calls,

View file

@ -33,6 +33,7 @@ from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
@ -128,11 +129,12 @@ class FaissIndex(EmbeddingIndex):
# Save updated index
await self._save_index()
async def delete_chunk(self, chunk_id: str) -> None:
if chunk_id not in self.chunk_ids:
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
chunk_ids = [c.chunk_id for c in chunks_for_deletion]
if not set(chunk_ids).issubset(self.chunk_ids):
return
async with self.chunk_id_lock:
def remove_chunk(chunk_id: str):
index = self.chunk_ids.index(chunk_id)
self.index.remove_ids(np.array([index]))
@ -146,6 +148,10 @@ class FaissIndex(EmbeddingIndex):
self.chunk_by_index = new_chunk_by_index
self.chunk_ids.pop(index)
async with self.chunk_id_lock:
for chunk_id in chunk_ids:
remove_chunk(chunk_id)
await self._save_index()
async def query_vector(
@ -297,8 +303,7 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
return await index.query_chunks(query, params)
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
"""Delete a chunk from a faiss index"""
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete chunks from a faiss index"""
faiss_index = self.cache[store_id].index
for chunk_id in chunk_ids:
await faiss_index.delete_chunk(chunk_id)
await faiss_index.delete_chunks(chunks_for_deletion)

View file

@ -31,6 +31,7 @@ from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIV
from llama_stack.providers.utils.memory.vector_store import (
RERANKER_TYPE_RRF,
RERANKER_TYPE_WEIGHTED,
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
@ -426,34 +427,36 @@ class SQLiteVecIndex(EmbeddingIndex):
return QueryChunksResponse(chunks=chunks, scores=scores)
async def delete_chunk(self, chunk_id: str) -> None:
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Remove a chunk from the SQLite vector store."""
chunk_ids = [c.chunk_id for c in chunks_for_deletion]
def _delete_chunk():
def _delete_chunks():
connection = _create_sqlite_connection(self.db_path)
cur = connection.cursor()
try:
cur.execute("BEGIN TRANSACTION")
# Delete from metadata table
cur.execute(f"DELETE FROM {self.metadata_table} WHERE id = ?", (chunk_id,))
placeholders = ",".join("?" * len(chunk_ids))
cur.execute(f"DELETE FROM {self.metadata_table} WHERE id IN ({placeholders})", chunk_ids)
# Delete from vector table
cur.execute(f"DELETE FROM {self.vector_table} WHERE id = ?", (chunk_id,))
cur.execute(f"DELETE FROM {self.vector_table} WHERE id IN ({placeholders})", chunk_ids)
# Delete from FTS table
cur.execute(f"DELETE FROM {self.fts_table} WHERE id = ?", (chunk_id,))
cur.execute(f"DELETE FROM {self.fts_table} WHERE id IN ({placeholders})", chunk_ids)
connection.commit()
except Exception as e:
connection.rollback()
logger.error(f"Error deleting chunk {chunk_id}: {e}")
logger.error(f"Error deleting chunks: {e}")
raise
finally:
cur.close()
connection.close()
await asyncio.to_thread(_delete_chunk)
await asyncio.to_thread(_delete_chunks)
class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
@ -551,12 +554,10 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
raise VectorStoreNotFoundError(vector_db_id)
return await index.query_chunks(query, params)
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
"""Delete a chunk from a sqlite_vec index."""
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete chunks from a sqlite_vec index."""
index = await self._get_and_cache_vector_db_index(store_id)
if not index:
raise VectorStoreNotFoundError(store_id)
for chunk_id in chunk_ids:
# Use the index's delete_chunk method
await index.index.delete_chunk(chunk_id)
await index.index.delete_chunks(chunks_for_deletion)

View file

@ -342,6 +342,7 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
""",
),
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
InlineProviderSpec(
api=Api.vector_io,
@ -350,6 +351,7 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
module="llama_stack.providers.inline.vector_io.chroma",
config_class="llama_stack.providers.inline.vector_io.chroma.ChromaVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
description="""
[Chroma](https://www.trychroma.com/) is an inline and remote vector
database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database.
@ -464,6 +466,7 @@ See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more
""",
),
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
InlineProviderSpec(
api=Api.vector_io,
@ -731,6 +734,7 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi
""",
),
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
InlineProviderSpec(
api=Api.vector_io,

View file

@ -235,6 +235,7 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
llama_model = self.get_llama_model(request.model)
if isinstance(request, ChatCompletionRequest):
# TODO: tools are never added to the request, so we need to add them here
if media_present or not llama_model:
input_dict["messages"] = [
await convert_message_to_openai_dict(m, download=True) for m in request.messages
@ -378,6 +379,7 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
# Fireworks chat completions OpenAI-compatible API does not support
# tool calls properly.
llama_model = self.get_llama_model(model_obj.provider_resource_id)
if llama_model:
return await OpenAIChatCompletionToLlamaStackMixin.openai_chat_completion(
self,
@ -431,4 +433,5 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
user=user,
)
logger.debug(f"fireworks params: {params}")
return await self._get_openai_client().chat.completions.create(model=model_obj.provider_resource_id, **params)

View file

@ -26,6 +26,7 @@ from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
@ -115,8 +116,10 @@ class ChromaIndex(EmbeddingIndex):
) -> QueryChunksResponse:
raise NotImplementedError("Keyword search is not supported in Chroma")
async def delete_chunk(self, chunk_id: str) -> None:
raise NotImplementedError("delete_chunk is not supported in Chroma")
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete a single chunk from the Chroma collection by its ID."""
ids = [f"{chunk.document_id}:{chunk.chunk_id}" for chunk in chunks_for_deletion]
await maybe_await(self.collection.delete(ids=ids))
async def query_hybrid(
self,
@ -144,6 +147,7 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
self.cache = {}
self.kvstore: KVStore | None = None
self.vector_db_store = None
self.files_api = files_api
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
@ -227,5 +231,10 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
self.cache[vector_db_id] = index
return index
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete chunks from a Chroma vector store."""
index = await self._get_and_cache_vector_db_index(store_id)
if not index:
raise ValueError(f"Vector DB {store_id} not found")
await index.index.delete_chunks(chunks_for_deletion)

View file

@ -28,6 +28,7 @@ from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
RERANKER_TYPE_WEIGHTED,
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
@ -287,14 +288,17 @@ class MilvusIndex(EmbeddingIndex):
return QueryChunksResponse(chunks=filtered_chunks, scores=filtered_scores)
async def delete_chunk(self, chunk_id: str) -> None:
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Remove a chunk from the Milvus collection."""
chunk_ids = [c.chunk_id for c in chunks_for_deletion]
try:
# Use IN clause with square brackets and single quotes for VARCHAR field
chunk_ids_str = ", ".join(f"'{chunk_id}'" for chunk_id in chunk_ids)
await asyncio.to_thread(
self.client.delete, collection_name=self.collection_name, filter=f'chunk_id == "{chunk_id}"'
self.client.delete, collection_name=self.collection_name, filter=f"chunk_id in [{chunk_ids_str}]"
)
except Exception as e:
logger.error(f"Error deleting chunk {chunk_id} from Milvus collection {self.collection_name}: {e}")
logger.error(f"Error deleting chunks from Milvus collection {self.collection_name}: {e}")
raise
@ -420,12 +424,10 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
return await index.query_chunks(query, params)
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete a chunk from a milvus vector store."""
index = await self._get_and_cache_vector_db_index(store_id)
if not index:
raise VectorStoreNotFoundError(store_id)
for chunk_id in chunk_ids:
# Use the index's delete_chunk method
await index.index.delete_chunk(chunk_id)
await index.index.delete_chunks(chunks_for_deletion)

View file

@ -27,6 +27,7 @@ from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
@ -163,10 +164,11 @@ class PGVectorIndex(EmbeddingIndex):
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
cur.execute(f"DROP TABLE IF EXISTS {self.table_name}")
async def delete_chunk(self, chunk_id: str) -> None:
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Remove a chunk from the PostgreSQL table."""
chunk_ids = [c.chunk_id for c in chunks_for_deletion]
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
cur.execute(f"DELETE FROM {self.table_name} WHERE id = %s", (chunk_id,))
cur.execute(f"DELETE FROM {self.table_name} WHERE id = ANY(%s)", (chunk_ids,))
class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
@ -275,12 +277,10 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco
self.cache[vector_db_id] = VectorDBWithIndex(vector_db, index, self.inference_api)
return self.cache[vector_db_id]
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete a chunk from a PostgreSQL vector store."""
index = await self._get_and_cache_vector_db_index(store_id)
if not index:
raise VectorStoreNotFoundError(store_id)
for chunk_id in chunk_ids:
# Use the index's delete_chunk method
await index.index.delete_chunk(chunk_id)
await index.index.delete_chunks(chunks_for_deletion)

View file

@ -29,6 +29,7 @@ from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig a
from llama_stack.providers.utils.kvstore import KVStore, kvstore_impl
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
@ -88,15 +89,16 @@ class QdrantIndex(EmbeddingIndex):
await self.client.upsert(collection_name=self.collection_name, points=points)
async def delete_chunk(self, chunk_id: str) -> None:
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Remove a chunk from the Qdrant collection."""
chunk_ids = [convert_id(c.chunk_id) for c in chunks_for_deletion]
try:
await self.client.delete(
collection_name=self.collection_name,
points_selector=models.PointIdsList(points=[convert_id(chunk_id)]),
points_selector=models.PointIdsList(points=chunk_ids),
)
except Exception as e:
log.error(f"Error deleting chunk {chunk_id} from Qdrant collection {self.collection_name}: {e}")
log.error(f"Error deleting chunks from Qdrant collection {self.collection_name}: {e}")
raise
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
@ -264,12 +266,14 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
) -> VectorStoreFileObject:
# Qdrant doesn't allow multiple clients to access the same storage path simultaneously.
async with self._qdrant_lock:
await super().openai_attach_file_to_vector_store(vector_store_id, file_id, attributes, chunking_strategy)
return await super().openai_attach_file_to_vector_store(
vector_store_id, file_id, attributes, chunking_strategy
)
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete chunks from a Qdrant vector store."""
index = await self._get_and_cache_vector_db_index(store_id)
if not index:
raise ValueError(f"Vector DB {store_id} not found")
for chunk_id in chunk_ids:
await index.index.delete_chunk(chunk_id)
await index.index.delete_chunks(chunks_for_deletion)

View file

@ -26,6 +26,7 @@ from llama_stack.providers.utils.memory.openai_vector_store_mixin import (
OpenAIVectorStoreMixin,
)
from llama_stack.providers.utils.memory.vector_store import (
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
@ -67,6 +68,7 @@ class WeaviateIndex(EmbeddingIndex):
data_objects.append(
wvc.data.DataObject(
properties={
"chunk_id": chunk.chunk_id,
"chunk_content": chunk.model_dump_json(),
},
vector=embeddings[i].tolist(),
@ -79,10 +81,11 @@ class WeaviateIndex(EmbeddingIndex):
# TODO: make this async friendly
collection.data.insert_many(data_objects)
async def delete_chunk(self, chunk_id: str) -> None:
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
sanitized_collection_name = sanitize_collection_name(self.collection_name, weaviate_format=True)
collection = self.client.collections.get(sanitized_collection_name)
collection.data.delete_many(where=Filter.by_property("id").contains_any([chunk_id]))
chunk_ids = [chunk.chunk_id for chunk in chunks_for_deletion]
collection.data.delete_many(where=Filter.by_property("chunk_id").contains_any(chunk_ids))
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
sanitized_collection_name = sanitize_collection_name(self.collection_name, weaviate_format=True)
@ -307,10 +310,10 @@ class WeaviateVectorIOAdapter(
return await index.query_chunks(query, params)
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
sanitized_collection_name = sanitize_collection_name(store_id, weaviate_format=True)
index = await self._get_and_cache_vector_db_index(sanitized_collection_name)
if not index:
raise ValueError(f"Vector DB {sanitized_collection_name} not found")
await index.delete(chunk_ids)
await index.index.delete_chunks(chunks_for_deletion)

View file

@ -6,7 +6,6 @@
import asyncio
import json
import logging
import mimetypes
import time
import uuid
@ -37,10 +36,15 @@ from llama_stack.apis.vector_io import (
VectorStoreSearchResponse,
VectorStoreSearchResponsePage,
)
from llama_stack.log import get_logger
from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.memory.vector_store import content_from_data_and_mime_type, make_overlapped_chunks
from llama_stack.providers.utils.memory.vector_store import (
ChunkForDeletion,
content_from_data_and_mime_type,
make_overlapped_chunks,
)
logger = logging.getLogger(__name__)
logger = get_logger(__name__, category="vector_io")
# Constants for OpenAI vector stores
CHUNK_MULTIPLIER = 5
@ -154,8 +158,8 @@ class OpenAIVectorStoreMixin(ABC):
self.openai_vector_stores = await self._load_openai_vector_stores()
@abstractmethod
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
"""Delete a chunk from a vector store."""
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete chunks from a vector store."""
pass
@abstractmethod
@ -614,7 +618,7 @@ class OpenAIVectorStoreMixin(ABC):
)
vector_store_file_object.status = "completed"
except Exception as e:
logger.error(f"Error attaching file to vector store: {e}")
logger.exception("Error attaching file to vector store")
vector_store_file_object.status = "failed"
vector_store_file_object.last_error = VectorStoreFileLastError(
code="server_error",
@ -767,7 +771,21 @@ class OpenAIVectorStoreMixin(ABC):
dict_chunks = await self._load_openai_vector_store_file_contents(vector_store_id, file_id)
chunks = [Chunk.model_validate(c) for c in dict_chunks]
await self.delete_chunks(vector_store_id, [str(c.chunk_id) for c in chunks if c.chunk_id])
# Create ChunkForDeletion objects with both chunk_id and document_id
chunks_for_deletion = []
for c in chunks:
if c.chunk_id:
document_id = c.metadata.get("document_id") or (
c.chunk_metadata.document_id if c.chunk_metadata else None
)
if document_id:
chunks_for_deletion.append(ChunkForDeletion(chunk_id=str(c.chunk_id), document_id=document_id))
else:
logger.warning(f"Chunk {c.chunk_id} has no document_id, skipping deletion")
if chunks_for_deletion:
await self.delete_chunks(vector_store_id, chunks_for_deletion)
store_info = self.openai_vector_stores[vector_store_id].copy()

View file

@ -16,6 +16,7 @@ from urllib.parse import unquote
import httpx
import numpy as np
from numpy.typing import NDArray
from pydantic import BaseModel
from llama_stack.apis.common.content_types import (
URL,
@ -34,6 +35,18 @@ from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
log = logging.getLogger(__name__)
class ChunkForDeletion(BaseModel):
"""Information needed to delete a chunk from a vector store.
:param chunk_id: The ID of the chunk to delete
:param document_id: The ID of the document this chunk belongs to
"""
chunk_id: str
document_id: str
# Constants for reranker types
RERANKER_TYPE_RRF = "rrf"
RERANKER_TYPE_WEIGHTED = "weighted"
@ -232,7 +245,7 @@ class EmbeddingIndex(ABC):
raise NotImplementedError()
@abstractmethod
async def delete_chunk(self, chunk_id: str):
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]):
raise NotImplementedError()
@abstractmethod