mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-16 14:38:00 +00:00
chore(tests): fix responses and vector_io tests (#3119)
Some fixes to MCP tests. And a bunch of fixes for Vector providers. I also enabled a bunch of Vector IO tests to be used with `LlamaStackLibraryClient` ## Test Plan Run Responses tests with llama stack library client: ``` pytest -s -v tests/integration/non_ci/responses/ --stack-config=server:starter \ --text-model openai/gpt-4o \ --embedding-model=sentence-transformers/all-MiniLM-L6-v2 \ -k "client_with_models" ``` Do the same with `-k openai_client` The rest should be taken care of by CI.
This commit is contained in:
parent
1721aafc1f
commit
3d90117891
25 changed files with 175 additions and 112 deletions
|
@ -26,6 +26,7 @@ from llama_stack.providers.utils.memory.openai_vector_store_mixin import (
|
|||
OpenAIVectorStoreMixin,
|
||||
)
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
ChunkForDeletion,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
|
@ -67,6 +68,7 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
data_objects.append(
|
||||
wvc.data.DataObject(
|
||||
properties={
|
||||
"chunk_id": chunk.chunk_id,
|
||||
"chunk_content": chunk.model_dump_json(),
|
||||
},
|
||||
vector=embeddings[i].tolist(),
|
||||
|
@ -79,10 +81,11 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
# TODO: make this async friendly
|
||||
collection.data.insert_many(data_objects)
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
sanitized_collection_name = sanitize_collection_name(self.collection_name, weaviate_format=True)
|
||||
collection = self.client.collections.get(sanitized_collection_name)
|
||||
collection.data.delete_many(where=Filter.by_property("id").contains_any([chunk_id]))
|
||||
chunk_ids = [chunk.chunk_id for chunk in chunks_for_deletion]
|
||||
collection.data.delete_many(where=Filter.by_property("chunk_id").contains_any(chunk_ids))
|
||||
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
sanitized_collection_name = sanitize_collection_name(self.collection_name, weaviate_format=True)
|
||||
|
@ -307,10 +310,10 @@ class WeaviateVectorIOAdapter(
|
|||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
sanitized_collection_name = sanitize_collection_name(store_id, weaviate_format=True)
|
||||
index = await self._get_and_cache_vector_db_index(sanitized_collection_name)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {sanitized_collection_name} not found")
|
||||
|
||||
await index.delete(chunk_ids)
|
||||
await index.index.delete_chunks(chunks_for_deletion)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue