fix(context): prevent provider data leak between streaming requests

The preserve_contexts_async_generator function was not cleaning up context
variables after streaming iterations, causing PROVIDER_DATA_VAR to leak
between sequential requests. Provider credentials or configuration from one
request could persist and leak into subsequent requests.

Root cause: Context variables were set at the start of each iteration but
never cleared afterward. When generators were consumed outside their original
context manager (after the with block exited), the context values remained
set indefinitely.

The fix clears context variables by setting them to None after each yield
and when the generator terminates. This works reliably across all scenarios
including when the library client wraps async generators for sync consumption
(which creates new asyncio Contexts per iteration). Direct value setting
avoids Context-scoped token issues that would occur with token-based reset.

Added unit and integration tests that verify context isolation.
This commit is contained in:
Ashwin Bharambe 2025-10-27 13:00:46 -07:00
parent 471b1b248b
commit 3ecb043d59
4 changed files with 345 additions and 9 deletions

View file

@ -21,20 +21,26 @@ def preserve_contexts_async_generator[T](
async def wrapper() -> AsyncGenerator[T, None]:
while True:
try:
# Restore context values before any await
for context_var in context_vars:
context_var.set(initial_context_values[context_var.name])
try:
item = await gen.__anext__()
except StopAsyncIteration:
# Clear context vars before exiting to prevent leaks
for context_var in context_vars:
context_var.set(None)
break
try:
yield item
# Update our tracked values with any changes made during this iteration
for context_var in context_vars:
initial_context_values[context_var.name] = context_var.get()
yield item
except StopAsyncIteration:
break
finally:
# Clear context vars after each yield to prevent leaks between requests
for context_var in context_vars:
context_var.set(None)
return wrapper()

View file

@ -0,0 +1,117 @@
"""
Integration test for provider data context isolation in streaming requests.
This test verifies that PROVIDER_DATA_VAR doesn't leak between sequential
streaming requests, ensuring provider credentials and configuration are
properly isolated between requests.
"""
import json
import pytest
@pytest.mark.asyncio
async def test_provider_data_isolation_library_client():
"""
Verifies that provider data context is properly isolated between
sequential streaming requests and cleaned up after each request.
"""
from llama_stack.core.request_headers import PROVIDER_DATA_VAR, request_provider_data_context
from llama_stack.core.utils.context import preserve_contexts_async_generator
async def mock_streaming_provider():
"""Simulates a streaming provider that reads PROVIDER_DATA_VAR"""
provider_data = PROVIDER_DATA_VAR.get()
yield {"provider_data": provider_data, "chunk": 1}
async def sse_generator(gen):
"""Simulates the SSE generator in the server"""
async for item in gen:
yield f"data: {json.dumps(item)}\n\n"
# Request 1: Set provider data to {"key": "value1"}
headers1 = {"X-LlamaStack-Provider-Data": json.dumps({"key": "value1"})}
with request_provider_data_context(headers1):
gen1 = preserve_contexts_async_generator(
sse_generator(mock_streaming_provider()),
[PROVIDER_DATA_VAR]
)
chunks1 = [chunk async for chunk in gen1]
data1 = json.loads(chunks1[0].split("data: ")[1])
assert data1["provider_data"] == {"key": "value1"}
# Context should be cleared after consuming the generator
leaked_data = PROVIDER_DATA_VAR.get()
assert leaked_data is None, f"Context leaked after request 1: {leaked_data}"
# Request 2: Set different provider data {"key": "value2"}
headers2 = {"X-LlamaStack-Provider-Data": json.dumps({"key": "value2"})}
with request_provider_data_context(headers2):
gen2 = preserve_contexts_async_generator(
sse_generator(mock_streaming_provider()),
[PROVIDER_DATA_VAR]
)
chunks2 = [chunk async for chunk in gen2]
data2 = json.loads(chunks2[0].split("data: ")[1])
assert data2["provider_data"] == {"key": "value2"}
leaked_data2 = PROVIDER_DATA_VAR.get()
assert leaked_data2 is None, f"Context leaked after request 2: {leaked_data2}"
# Request 3: No provider data
gen3 = preserve_contexts_async_generator(
sse_generator(mock_streaming_provider()),
[PROVIDER_DATA_VAR]
)
chunks3 = [chunk async for chunk in gen3]
data3 = json.loads(chunks3[0].split("data: ")[1])
assert data3["provider_data"] is None
@pytest.mark.skipif(
True,
reason="Requires custom test provider with context echo capability"
)
def test_provider_data_isolation_with_server(llama_stack_client):
"""
Server-based test for context isolation (currently skipped).
Requires a test inference provider that echoes back PROVIDER_DATA_VAR
in streaming responses to verify proper isolation.
"""
response1 = llama_stack_client.inference.chat_completion(
model_id="context-echo-model",
messages=[{"role": "user", "content": "test"}],
stream=True,
extra_headers={
"X-LlamaStack-Provider-Data": json.dumps({"test_key": "value1"})
},
)
chunks1 = []
for chunk in response1:
if chunk.choices and chunk.choices[0].delta.content:
chunks1.append(chunk.choices[0].delta.content)
response1_data = json.loads("".join(chunks1))
assert response1_data["provider_data"] == {"test_key": "value1"}
response2 = llama_stack_client.inference.chat_completion(
model_id="context-echo-model",
messages=[{"role": "user", "content": "test"}],
stream=True,
extra_headers={
"X-LlamaStack-Provider-Data": json.dumps({"test_key": "value2"})
},
)
chunks2 = []
for chunk in response2:
if chunk.choices and chunk.choices[0].delta.content:
chunks2.append(chunk.choices[0].delta.content)
response2_data = json.loads("".join(chunks2))
assert response2_data["provider_data"] == {"test_key": "value2"}

View file

@ -0,0 +1,153 @@
"""
Test-only inference provider that echoes PROVIDER_DATA_VAR in responses.
This provider is used to test context isolation between requests in end-to-end
scenarios with a real server.
"""
import json
from typing import AsyncIterator
from pydantic import BaseModel
from llama_stack.apis.inference import (
Inference,
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAIChatCompletionRequestWithExtraBody,
OpenAICompletion,
OpenAICompletionRequestWithExtraBody,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
)
from llama_stack.apis.models import Model
from llama_stack.core.request_headers import PROVIDER_DATA_VAR
from llama_stack_client.types.inference_chat_completion_chunk import (
ChatCompletionChunkChoice,
ChatCompletionChunkChoiceDelta,
)
class ContextEchoConfig(BaseModel):
"""Minimal config for the test provider."""
pass
class ContextEchoInferenceProvider(Inference):
"""
Test-only provider that echoes the current PROVIDER_DATA_VAR value.
Used to detect context leaks between streaming requests in end-to-end tests.
"""
def __init__(self, config: ContextEchoConfig) -> None:
self.config = config
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def register_model(self, model: Model) -> Model:
return model
async def unregister_model(self, model_id: str) -> None:
pass
async def list_models(self) -> list[Model]:
return []
async def openai_embeddings(
self,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError("Embeddings not supported by test provider")
async def openai_completion(
self,
params: OpenAICompletionRequestWithExtraBody,
) -> OpenAICompletion:
raise NotImplementedError("Use openai_chat_completion instead")
async def openai_chat_completion(
self,
params: OpenAIChatCompletionRequestWithExtraBody,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
"""Echo the provider data context back in streaming chunks."""
async def stream_with_context():
# Read the current provider data from context
# This is the KEY part - if context leaks, this will show old data
provider_data = PROVIDER_DATA_VAR.get()
# Create a JSON message with the provider data
# The test will parse this to verify correct isolation
message = json.dumps({
"provider_data": provider_data,
"test_marker": "context_echo"
})
# Yield a chunk with the provider data
yield OpenAIChatCompletionChunk(
id="context-echo-1",
choices=[
ChatCompletionChunkChoice(
delta=ChatCompletionChunkChoiceDelta(
content=message,
role="assistant",
),
index=0,
finish_reason=None,
)
],
created=0,
model=params.model,
object="chat.completion.chunk",
)
# Final chunk with finish_reason
yield OpenAIChatCompletionChunk(
id="context-echo-2",
choices=[
ChatCompletionChunkChoice(
delta=ChatCompletionChunkChoiceDelta(),
index=0,
finish_reason="stop",
)
],
created=0,
model=params.model,
object="chat.completion.chunk",
)
if params.stream:
return stream_with_context()
else:
# Non-streaming fallback
provider_data = PROVIDER_DATA_VAR.get()
message_content = json.dumps({
"provider_data": provider_data,
"test_marker": "context_echo"
})
from llama_stack_client.types.inference_chat_completion import (
ChatCompletionChoice,
ChatCompletionMessage,
)
return OpenAIChatCompletion(
id="context-echo",
choices=[
ChatCompletionChoice(
finish_reason="stop",
index=0,
message=ChatCompletionMessage(
content=message_content,
role="assistant",
),
)
],
created=0,
model=params.model,
object="chat.completion",
)

View file

@ -0,0 +1,60 @@
import json
import asyncio
import pytest
from contextvars import ContextVar
from contextlib import contextmanager
from llama_stack.core.utils.context import preserve_contexts_async_generator
# Define provider data context variable and context manager locally
PROVIDER_DATA_VAR = ContextVar("provider_data", default=None)
@contextmanager
def request_provider_data_context(headers):
val = headers.get("X-LlamaStack-Provider-Data")
provider_data = json.loads(val) if val else {}
token = PROVIDER_DATA_VAR.set(provider_data)
try:
yield
finally:
PROVIDER_DATA_VAR.reset(token)
def create_sse_event(data):
return f"data: {json.dumps(data)}\n\n"
async def sse_generator(event_gen_coroutine):
event_gen = await event_gen_coroutine
async for item in event_gen:
yield create_sse_event(item)
await asyncio.sleep(0)
async def async_event_gen():
async def event_gen():
yield PROVIDER_DATA_VAR.get()
return event_gen()
@pytest.mark.asyncio
async def test_provider_data_context_cleared_between_sse_requests():
headers = {"X-LlamaStack-Provider-Data": json.dumps({"api_key": "abc"})}
with request_provider_data_context(headers):
gen1 = preserve_contexts_async_generator(
sse_generator(async_event_gen()), [PROVIDER_DATA_VAR]
)
events1 = [event async for event in gen1]
assert events1 == [create_sse_event({"api_key": "abc"})]
assert PROVIDER_DATA_VAR.get() is None
gen2 = preserve_contexts_async_generator(
sse_generator(async_event_gen()), [PROVIDER_DATA_VAR]
)
events2 = [event async for event in gen2]
assert events2 == [create_sse_event(None)]
assert PROVIDER_DATA_VAR.get() is None