Merge branch 'main' into add-nvidia-inference-adapter

This commit is contained in:
Matthew Farrellee 2024-11-15 14:09:12 -05:00
commit 43262df033
399 changed files with 17826 additions and 10490 deletions

View file

@ -271,7 +271,7 @@ class Session(BaseModel):
turns: List[Turn]
started_at: datetime
memory_bank: Optional[MemoryBankDef] = None
memory_bank: Optional[MemoryBank] = None
class AgentConfigCommon(BaseModel):

View file

@ -21,7 +21,7 @@ class PaginatedRowsResult(BaseModel):
class DatasetStore(Protocol):
def get_dataset(self, identifier: str) -> DatasetDefWithProvider: ...
def get_dataset(self, dataset_id: str) -> Dataset: ...
@runtime_checkable

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Optional, Protocol
from typing import Any, Dict, List, Literal, Optional, Protocol
from llama_models.llama3.api.datatypes import URL
@ -13,16 +13,11 @@ from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, Field
from llama_stack.apis.common.type_system import ParamType
from llama_stack.apis.resource import Resource, ResourceType
@json_schema_type
class DatasetDef(BaseModel):
identifier: str = Field(
description="A unique name for the dataset",
)
dataset_schema: Dict[str, ParamType] = Field(
description="The schema definition for this dataset",
)
class CommonDatasetFields(BaseModel):
dataset_schema: Dict[str, ParamType]
url: URL
metadata: Dict[str, Any] = Field(
default_factory=dict,
@ -31,24 +26,41 @@ class DatasetDef(BaseModel):
@json_schema_type
class DatasetDefWithProvider(DatasetDef):
provider_id: str = Field(
description="ID of the provider which serves this dataset",
)
class Dataset(CommonDatasetFields, Resource):
type: Literal[ResourceType.dataset.value] = ResourceType.dataset.value
@property
def dataset_id(self) -> str:
return self.identifier
@property
def provider_dataset_id(self) -> str:
return self.provider_resource_id
class DatasetInput(CommonDatasetFields, BaseModel):
dataset_id: str
provider_id: Optional[str] = None
provider_dataset_id: Optional[str] = None
class Datasets(Protocol):
@webmethod(route="/datasets/register", method="POST")
async def register_dataset(
self,
dataset_def: DatasetDefWithProvider,
dataset_id: str,
dataset_schema: Dict[str, ParamType],
url: URL,
provider_dataset_id: Optional[str] = None,
provider_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
) -> None: ...
@webmethod(route="/datasets/get", method="GET")
async def get_dataset(
self,
dataset_identifier: str,
) -> Optional[DatasetDefWithProvider]: ...
dataset_id: str,
) -> Optional[Dataset]: ...
@webmethod(route="/datasets/list", method="GET")
async def list_datasets(self) -> List[DatasetDefWithProvider]: ...
async def list_datasets(self) -> List[Dataset]: ...

View file

@ -14,6 +14,7 @@ from llama_stack.apis.scoring_functions import * # noqa: F403
from llama_stack.apis.agents import AgentConfig
from llama_stack.apis.common.job_types import Job, JobStatus
from llama_stack.apis.scoring import * # noqa: F403
from llama_stack.apis.eval_tasks import * # noqa: F403
@json_schema_type
@ -35,36 +36,65 @@ EvalCandidate = Annotated[
]
@json_schema_type
class BenchmarkEvalTaskConfig(BaseModel):
type: Literal["benchmark"] = "benchmark"
eval_candidate: EvalCandidate
num_examples: Optional[int] = Field(
description="Number of examples to evaluate (useful for testing), if not provided, all examples in the dataset will be evaluated",
default=None,
)
@json_schema_type
class AppEvalTaskConfig(BaseModel):
type: Literal["app"] = "app"
eval_candidate: EvalCandidate
scoring_params: Dict[str, ScoringFnParams] = Field(
description="Map between scoring function id and parameters for each scoring function you want to run",
default_factory=dict,
)
num_examples: Optional[int] = Field(
description="Number of examples to evaluate (useful for testing), if not provided, all examples in the dataset will be evaluated",
default=None,
)
# we could optinally add any specific dataset config here
EvalTaskConfig = Annotated[
Union[BenchmarkEvalTaskConfig, AppEvalTaskConfig], Field(discriminator="type")
]
@json_schema_type
class EvaluateResponse(BaseModel):
generations: List[Dict[str, Any]]
# each key in the dict is a scoring function name
scores: Dict[str, ScoringResult]
class Eval(Protocol):
@webmethod(route="/eval/evaluate_batch", method="POST")
async def evaluate_batch(
@webmethod(route="/eval/run_eval", method="POST")
async def run_eval(
self,
dataset_id: str,
candidate: EvalCandidate,
scoring_functions: List[str],
task_id: str,
task_config: EvalTaskConfig,
) -> Job: ...
@webmethod(route="/eval/evaluate", method="POST")
async def evaluate(
@webmethod(route="/eval/evaluate_rows", method="POST")
async def evaluate_rows(
self,
task_id: str,
input_rows: List[Dict[str, Any]],
candidate: EvalCandidate,
scoring_functions: List[str],
task_config: EvalTaskConfig,
) -> EvaluateResponse: ...
@webmethod(route="/eval/job/status", method="GET")
async def job_status(self, job_id: str) -> Optional[JobStatus]: ...
async def job_status(self, task_id: str, job_id: str) -> Optional[JobStatus]: ...
@webmethod(route="/eval/job/cancel", method="POST")
async def job_cancel(self, job_id: str) -> None: ...
async def job_cancel(self, task_id: str, job_id: str) -> None: ...
@webmethod(route="/eval/job/result", method="GET")
async def job_result(self, job_id: str) -> EvaluateResponse: ...
async def job_result(self, task_id: str, job_id: str) -> EvaluateResponse: ...

View file

@ -0,0 +1,7 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .eval_tasks import * # noqa: F401 F403

View file

@ -0,0 +1,60 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Literal, Optional, Protocol, runtime_checkable
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, Field
from llama_stack.apis.resource import Resource, ResourceType
class CommonEvalTaskFields(BaseModel):
dataset_id: str
scoring_functions: List[str]
metadata: Dict[str, Any] = Field(
default_factory=dict,
description="Metadata for this evaluation task",
)
@json_schema_type
class EvalTask(CommonEvalTaskFields, Resource):
type: Literal[ResourceType.eval_task.value] = ResourceType.eval_task.value
@property
def eval_task_id(self) -> str:
return self.identifier
@property
def provider_eval_task_id(self) -> str:
return self.provider_resource_id
class EvalTaskInput(CommonEvalTaskFields, BaseModel):
eval_task_id: str
provider_id: Optional[str] = None
provider_eval_task_id: Optional[str] = None
@runtime_checkable
class EvalTasks(Protocol):
@webmethod(route="/eval_tasks/list", method="GET")
async def list_eval_tasks(self) -> List[EvalTask]: ...
@webmethod(route="/eval_tasks/get", method="GET")
async def get_eval_task(self, name: str) -> Optional[EvalTask]: ...
@webmethod(route="/eval_tasks/register", method="POST")
async def register_eval_task(
self,
eval_task_id: str,
dataset_id: str,
scoring_functions: List[str],
provider_eval_task_id: Optional[str] = None,
provider_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
) -> None: ...

View file

@ -216,7 +216,7 @@ class EmbeddingsResponse(BaseModel):
class ModelStore(Protocol):
def get_model(self, identifier: str) -> ModelDef: ...
def get_model(self, identifier: str) -> Model: ...
@runtime_checkable
@ -226,7 +226,7 @@ class Inference(Protocol):
@webmethod(route="/inference/completion")
async def completion(
self,
model: str,
model_id: str,
content: InterleavedTextMedia,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
@ -237,7 +237,7 @@ class Inference(Protocol):
@webmethod(route="/inference/chat_completion")
async def chat_completion(
self,
model: str,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
# zero-shot tool definitions as input to the model
@ -254,6 +254,6 @@ class Inference(Protocol):
@webmethod(route="/inference/embeddings")
async def embeddings(
self,
model: str,
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse: ...

View file

@ -75,14 +75,22 @@ class MemoryClient(Memory):
async def run_main(host: str, port: int, stream: bool):
banks_client = MemoryBanksClient(f"http://{host}:{port}")
bank = VectorMemoryBankDef(
bank = VectorMemoryBank(
identifier="test_bank",
provider_id="",
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
)
await banks_client.register_memory_bank(bank)
await banks_client.register_memory_bank(
bank.identifier,
VectorMemoryBankParams(
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
provider_resource_id=bank.identifier,
)
retrieved_bank = await banks_client.get_memory_bank(bank.identifier)
assert retrieved_bank is not None

View file

@ -39,7 +39,7 @@ class QueryDocumentsResponse(BaseModel):
class MemoryBankStore(Protocol):
def get_memory_bank(self, bank_id: str) -> Optional[MemoryBankDef]: ...
def get_memory_bank(self, bank_id: str) -> Optional[MemoryBank]: ...
@runtime_checkable

View file

@ -5,7 +5,6 @@
# the root directory of this source tree.
import asyncio
import json
from typing import Any, Dict, List, Optional
@ -26,13 +25,13 @@ def deserialize_memory_bank_def(
raise ValueError("Memory bank type not specified")
type = j["type"]
if type == MemoryBankType.vector.value:
return VectorMemoryBankDef(**j)
return VectorMemoryBank(**j)
elif type == MemoryBankType.keyvalue.value:
return KeyValueMemoryBankDef(**j)
return KeyValueMemoryBank(**j)
elif type == MemoryBankType.keyword.value:
return KeywordMemoryBankDef(**j)
return KeywordMemoryBank(**j)
elif type == MemoryBankType.graph.value:
return GraphMemoryBankDef(**j)
return GraphMemoryBank(**j)
else:
raise ValueError(f"Unknown memory bank type: {type}")
@ -47,7 +46,7 @@ class MemoryBanksClient(MemoryBanks):
async def shutdown(self) -> None:
pass
async def list_memory_banks(self) -> List[MemoryBankDefWithProvider]:
async def list_memory_banks(self) -> List[MemoryBank]:
async with httpx.AsyncClient() as client:
response = await client.get(
f"{self.base_url}/memory_banks/list",
@ -57,13 +56,20 @@ class MemoryBanksClient(MemoryBanks):
return [deserialize_memory_bank_def(x) for x in response.json()]
async def register_memory_bank(
self, memory_bank: MemoryBankDefWithProvider
self,
memory_bank_id: str,
params: BankParams,
provider_resource_id: Optional[str] = None,
provider_id: Optional[str] = None,
) -> None:
async with httpx.AsyncClient() as client:
response = await client.post(
f"{self.base_url}/memory_banks/register",
json={
"memory_bank": json.loads(memory_bank.json()),
"memory_bank_id": memory_bank_id,
"provider_resource_id": provider_resource_id,
"provider_id": provider_id,
"params": params.dict(),
},
headers={"Content-Type": "application/json"},
)
@ -71,13 +77,13 @@ class MemoryBanksClient(MemoryBanks):
async def get_memory_bank(
self,
identifier: str,
) -> Optional[MemoryBankDefWithProvider]:
memory_bank_id: str,
) -> Optional[MemoryBank]:
async with httpx.AsyncClient() as client:
response = await client.get(
f"{self.base_url}/memory_banks/get",
params={
"identifier": identifier,
"memory_bank_id": memory_bank_id,
},
headers={"Content-Type": "application/json"},
)
@ -94,12 +100,12 @@ async def run_main(host: str, port: int, stream: bool):
# register memory bank for the first time
response = await client.register_memory_bank(
VectorMemoryBankDef(
identifier="test_bank2",
memory_bank_id="test_bank2",
params=VectorMemoryBankParams(
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
)
),
)
cprint(f"register_memory_bank response={response}", "blue")

View file

@ -5,11 +5,21 @@
# the root directory of this source tree.
from enum import Enum
from typing import List, Literal, Optional, Protocol, runtime_checkable, Union
from typing import (
Annotated,
List,
Literal,
Optional,
Protocol,
runtime_checkable,
Union,
)
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, Field
from typing_extensions import Annotated
from llama_stack.apis.resource import Resource, ResourceType
@json_schema_type
@ -20,59 +30,120 @@ class MemoryBankType(Enum):
graph = "graph"
class CommonDef(BaseModel):
identifier: str
# Hack: move this out later
provider_id: str = ""
# define params for each type of memory bank, this leads to a tagged union
# accepted as input from the API or from the config.
@json_schema_type
class VectorMemoryBankDef(CommonDef):
type: Literal[MemoryBankType.vector.value] = MemoryBankType.vector.value
class VectorMemoryBankParams(BaseModel):
memory_bank_type: Literal[MemoryBankType.vector.value] = MemoryBankType.vector.value
embedding_model: str
chunk_size_in_tokens: int
overlap_size_in_tokens: Optional[int] = None
@json_schema_type
class KeyValueMemoryBankDef(CommonDef):
type: Literal[MemoryBankType.keyvalue.value] = MemoryBankType.keyvalue.value
class KeyValueMemoryBankParams(BaseModel):
memory_bank_type: Literal[MemoryBankType.keyvalue.value] = (
MemoryBankType.keyvalue.value
)
@json_schema_type
class KeywordMemoryBankDef(CommonDef):
type: Literal[MemoryBankType.keyword.value] = MemoryBankType.keyword.value
class KeywordMemoryBankParams(BaseModel):
memory_bank_type: Literal[MemoryBankType.keyword.value] = (
MemoryBankType.keyword.value
)
@json_schema_type
class GraphMemoryBankDef(CommonDef):
type: Literal[MemoryBankType.graph.value] = MemoryBankType.graph.value
class GraphMemoryBankParams(BaseModel):
memory_bank_type: Literal[MemoryBankType.graph.value] = MemoryBankType.graph.value
MemoryBankDef = Annotated[
BankParams = Annotated[
Union[
VectorMemoryBankDef,
KeyValueMemoryBankDef,
KeywordMemoryBankDef,
GraphMemoryBankDef,
VectorMemoryBankParams,
KeyValueMemoryBankParams,
KeywordMemoryBankParams,
GraphMemoryBankParams,
],
Field(discriminator="type"),
Field(discriminator="memory_bank_type"),
]
MemoryBankDefWithProvider = MemoryBankDef
# Some common functionality for memory banks.
class MemoryBankResourceMixin(Resource):
type: Literal[ResourceType.memory_bank.value] = ResourceType.memory_bank.value
@property
def memory_bank_id(self) -> str:
return self.identifier
@property
def provider_memory_bank_id(self) -> str:
return self.provider_resource_id
@json_schema_type
class VectorMemoryBank(MemoryBankResourceMixin):
memory_bank_type: Literal[MemoryBankType.vector.value] = MemoryBankType.vector.value
embedding_model: str
chunk_size_in_tokens: int
overlap_size_in_tokens: Optional[int] = None
@json_schema_type
class KeyValueMemoryBank(MemoryBankResourceMixin):
memory_bank_type: Literal[MemoryBankType.keyvalue.value] = (
MemoryBankType.keyvalue.value
)
# TODO: KeyValue and Keyword are so similar in name, oof. Get a better naming convention.
@json_schema_type
class KeywordMemoryBank(MemoryBankResourceMixin):
memory_bank_type: Literal[MemoryBankType.keyword.value] = (
MemoryBankType.keyword.value
)
@json_schema_type
class GraphMemoryBank(MemoryBankResourceMixin):
memory_bank_type: Literal[MemoryBankType.graph.value] = MemoryBankType.graph.value
MemoryBank = Annotated[
Union[
VectorMemoryBank,
KeyValueMemoryBank,
KeywordMemoryBank,
GraphMemoryBank,
],
Field(discriminator="memory_bank_type"),
]
class MemoryBankInput(BaseModel):
memory_bank_id: str
params: BankParams
provider_memory_bank_id: Optional[str] = None
@runtime_checkable
class MemoryBanks(Protocol):
@webmethod(route="/memory_banks/list", method="GET")
async def list_memory_banks(self) -> List[MemoryBankDefWithProvider]: ...
async def list_memory_banks(self) -> List[MemoryBank]: ...
@webmethod(route="/memory_banks/get", method="GET")
async def get_memory_bank(
self, identifier: str
) -> Optional[MemoryBankDefWithProvider]: ...
async def get_memory_bank(self, memory_bank_id: str) -> Optional[MemoryBank]: ...
@webmethod(route="/memory_banks/register", method="POST")
async def register_memory_bank(
self, memory_bank: MemoryBankDefWithProvider
) -> None: ...
self,
memory_bank_id: str,
params: BankParams,
provider_id: Optional[str] = None,
provider_memory_bank_id: Optional[str] = None,
) -> MemoryBank: ...
@webmethod(route="/memory_banks/unregister", method="POST")
async def unregister_memory_bank(self, memory_bank_id: str) -> None: ...

View file

@ -26,16 +26,16 @@ class ModelsClient(Models):
async def shutdown(self) -> None:
pass
async def list_models(self) -> List[ModelDefWithProvider]:
async def list_models(self) -> List[Model]:
async with httpx.AsyncClient() as client:
response = await client.get(
f"{self.base_url}/models/list",
headers={"Content-Type": "application/json"},
)
response.raise_for_status()
return [ModelDefWithProvider(**x) for x in response.json()]
return [Model(**x) for x in response.json()]
async def register_model(self, model: ModelDefWithProvider) -> None:
async def register_model(self, model: Model) -> None:
async with httpx.AsyncClient() as client:
response = await client.post(
f"{self.base_url}/models/register",
@ -46,7 +46,7 @@ class ModelsClient(Models):
)
response.raise_for_status()
async def get_model(self, identifier: str) -> Optional[ModelDefWithProvider]:
async def get_model(self, identifier: str) -> Optional[Model]:
async with httpx.AsyncClient() as client:
response = await client.get(
f"{self.base_url}/models/get",
@ -59,7 +59,16 @@ class ModelsClient(Models):
j = response.json()
if j is None:
return None
return ModelDefWithProvider(**j)
return Model(**j)
async def unregister_model(self, model_id: str) -> None:
async with httpx.AsyncClient() as client:
response = await client.delete(
f"{self.base_url}/models/delete",
params={"model_id": model_id},
headers={"Content-Type": "application/json"},
)
response.raise_for_status()
async def run_main(host: str, port: int, stream: bool):

View file

@ -4,19 +4,15 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
from typing import Any, Dict, List, Literal, Optional, Protocol, runtime_checkable
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, Field
from llama_stack.apis.resource import Resource, ResourceType
class ModelDef(BaseModel):
identifier: str = Field(
description="A unique name for the model type",
)
llama_model: str = Field(
description="Pointer to the underlying core Llama family model. Each model served by Llama Stack must have a core Llama model.",
)
class CommonModelFields(BaseModel):
metadata: Dict[str, Any] = Field(
default_factory=dict,
description="Any additional metadata for this model",
@ -24,19 +20,40 @@ class ModelDef(BaseModel):
@json_schema_type
class ModelDefWithProvider(ModelDef):
provider_id: str = Field(
description="The provider ID for this model",
)
class Model(CommonModelFields, Resource):
type: Literal[ResourceType.model.value] = ResourceType.model.value
@property
def model_id(self) -> str:
return self.identifier
@property
def provider_model_id(self) -> str:
return self.provider_resource_id
class ModelInput(CommonModelFields):
model_id: str
provider_id: Optional[str] = None
provider_model_id: Optional[str] = None
@runtime_checkable
class Models(Protocol):
@webmethod(route="/models/list", method="GET")
async def list_models(self) -> List[ModelDefWithProvider]: ...
async def list_models(self) -> List[Model]: ...
@webmethod(route="/models/get", method="GET")
async def get_model(self, identifier: str) -> Optional[ModelDefWithProvider]: ...
async def get_model(self, identifier: str) -> Optional[Model]: ...
@webmethod(route="/models/register", method="POST")
async def register_model(self, model: ModelDefWithProvider) -> None: ...
async def register_model(
self,
model_id: str,
provider_model_id: Optional[str] = None,
provider_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
) -> Model: ...
@webmethod(route="/models/unregister", method="POST")
async def unregister_model(self, model_id: str) -> None: ...

View file

@ -0,0 +1,39 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
@json_schema_type
class ResourceType(Enum):
model = "model"
shield = "shield"
memory_bank = "memory_bank"
dataset = "dataset"
scoring_function = "scoring_function"
eval_task = "eval_task"
class Resource(BaseModel):
"""Base class for all Llama Stack resources"""
identifier: str = Field(
description="Unique identifier for this resource in llama stack"
)
provider_resource_id: str = Field(
description="Unique identifier for this resource in the provider",
default=None,
)
provider_id: str = Field(description="ID of the provider that owns this resource")
type: ResourceType = Field(
description="Type of resource (e.g. 'model', 'shield', 'memory_bank', etc.)"
)

View file

@ -27,7 +27,7 @@ async def get_client_impl(config: RemoteProviderConfig, _deps: Any) -> Safety:
def encodable_dict(d: BaseModel):
return json.loads(d.json())
return json.loads(d.model_dump_json())
class SafetyClient(Safety):
@ -41,13 +41,13 @@ class SafetyClient(Safety):
pass
async def run_shield(
self, shield_type: str, messages: List[Message]
self, shield_id: str, messages: List[Message]
) -> RunShieldResponse:
async with httpx.AsyncClient() as client:
response = await client.post(
f"{self.base_url}/safety/run_shield",
json=dict(
shield_type=shield_type,
shield_id=shield_id,
messages=[encodable_dict(m) for m in messages],
),
headers={
@ -80,7 +80,7 @@ async def run_main(host: str, port: int, image_path: str = None):
)
cprint(f"User>{message.content}", "green")
response = await client.run_shield(
shield_type="llama_guard",
shield_id="Llama-Guard-3-1B",
messages=[message],
)
print(response)
@ -91,7 +91,7 @@ async def run_main(host: str, port: int, image_path: str = None):
]:
cprint(f"User>{message.content}", "green")
response = await client.run_shield(
shield_type="llama_guard",
shield_id="llama_guard",
messages=[message],
)
print(response)

View file

@ -39,7 +39,7 @@ class RunShieldResponse(BaseModel):
class ShieldStore(Protocol):
def get_shield(self, identifier: str) -> ShieldDef: ...
async def get_shield(self, identifier: str) -> Shield: ...
@runtime_checkable
@ -48,5 +48,8 @@ class Safety(Protocol):
@webmethod(route="/safety/run_shield")
async def run_shield(
self, shield_type: str, messages: List[Message], params: Dict[str, Any] = None
self,
shield_id: str,
messages: List[Message],
params: Dict[str, Any] = None,
) -> RunShieldResponse: ...

View file

@ -37,7 +37,7 @@ class ScoreResponse(BaseModel):
class ScoringFunctionStore(Protocol):
def get_scoring_function(self, name: str) -> ScoringFnDefWithProvider: ...
def get_scoring_function(self, scoring_fn_id: str) -> ScoringFn: ...
@runtime_checkable
@ -48,11 +48,13 @@ class Scoring(Protocol):
async def score_batch(
self,
dataset_id: str,
scoring_functions: List[str],
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
save_results_dataset: bool = False,
) -> ScoreBatchResponse: ...
@webmethod(route="/scoring/score")
async def score(
self, input_rows: List[Dict[str, Any]], scoring_functions: List[str]
self,
input_rows: List[Dict[str, Any]],
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
) -> ScoreResponse: ...

View file

@ -4,71 +4,119 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
from enum import Enum
from typing import (
Any,
Dict,
List,
Literal,
Optional,
Protocol,
runtime_checkable,
Union,
)
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, Field
from typing_extensions import Annotated
from llama_stack.apis.common.type_system import ParamType
@json_schema_type
class Parameter(BaseModel):
name: str
type: ParamType
description: Optional[str] = None
from llama_stack.apis.resource import Resource, ResourceType
# Perhaps more structure can be imposed on these functions. Maybe they could be associated
# with standard metrics so they can be rolled up?
@json_schema_type
class ScoringFnParamsType(Enum):
llm_as_judge = "llm_as_judge"
regex_parser = "regex_parser"
class LLMAsJudgeContext(BaseModel):
@json_schema_type
class LLMAsJudgeScoringFnParams(BaseModel):
type: Literal[ScoringFnParamsType.llm_as_judge.value] = (
ScoringFnParamsType.llm_as_judge.value
)
judge_model: str
prompt_template: Optional[str] = None
judge_score_regex: Optional[List[str]] = Field(
description="Regex to extract the score from the judge response",
default=None,
judge_score_regexes: Optional[List[str]] = Field(
description="Regexes to extract the answer from generated response",
default_factory=list,
)
@json_schema_type
class ScoringFnDef(BaseModel):
identifier: str
class RegexParserScoringFnParams(BaseModel):
type: Literal[ScoringFnParamsType.regex_parser.value] = (
ScoringFnParamsType.regex_parser.value
)
parsing_regexes: Optional[List[str]] = Field(
description="Regex to extract the answer from generated response",
default_factory=list,
)
ScoringFnParams = Annotated[
Union[
LLMAsJudgeScoringFnParams,
RegexParserScoringFnParams,
],
Field(discriminator="type"),
]
class CommonScoringFnFields(BaseModel):
description: Optional[str] = None
metadata: Dict[str, Any] = Field(
default_factory=dict,
description="Any additional metadata for this definition",
)
parameters: List[Parameter] = Field(
description="List of parameters for the deterministic function",
default_factory=list,
)
return_type: ParamType = Field(
description="The return type of the deterministic function",
)
context: Optional[LLMAsJudgeContext] = None
# We can optionally add information here to support packaging of code, etc.
params: Optional[ScoringFnParams] = Field(
description="The parameters for the scoring function for benchmark eval, these can be overridden for app eval",
default=None,
)
@json_schema_type
class ScoringFnDefWithProvider(ScoringFnDef):
provider_id: str = Field(
description="ID of the provider which serves this dataset",
class ScoringFn(CommonScoringFnFields, Resource):
type: Literal[ResourceType.scoring_function.value] = (
ResourceType.scoring_function.value
)
@property
def scoring_fn_id(self) -> str:
return self.identifier
@property
def provider_scoring_fn_id(self) -> str:
return self.provider_resource_id
class ScoringFnInput(CommonScoringFnFields, BaseModel):
scoring_fn_id: str
provider_id: Optional[str] = None
provider_scoring_fn_id: Optional[str] = None
@runtime_checkable
class ScoringFunctions(Protocol):
@webmethod(route="/scoring_functions/list", method="GET")
async def list_scoring_functions(self) -> List[ScoringFnDefWithProvider]: ...
async def list_scoring_functions(self) -> List[ScoringFn]: ...
@webmethod(route="/scoring_functions/get", method="GET")
async def get_scoring_function(
self, name: str
) -> Optional[ScoringFnDefWithProvider]: ...
async def get_scoring_function(self, scoring_fn_id: str) -> Optional[ScoringFn]: ...
@webmethod(route="/scoring_functions/register", method="POST")
async def register_scoring_function(
self, function_def: ScoringFnDefWithProvider
self,
scoring_fn_id: str,
description: str,
return_type: ParamType,
provider_scoring_fn_id: Optional[str] = None,
provider_id: Optional[str] = None,
params: Optional[ScoringFnParams] = None,
) -> None: ...

View file

@ -5,7 +5,6 @@
# the root directory of this source tree.
import asyncio
import json
from typing import List, Optional
@ -26,32 +25,41 @@ class ShieldsClient(Shields):
async def shutdown(self) -> None:
pass
async def list_shields(self) -> List[ShieldDefWithProvider]:
async def list_shields(self) -> List[Shield]:
async with httpx.AsyncClient() as client:
response = await client.get(
f"{self.base_url}/shields/list",
headers={"Content-Type": "application/json"},
)
response.raise_for_status()
return [ShieldDefWithProvider(**x) for x in response.json()]
return [Shield(**x) for x in response.json()]
async def register_shield(self, shield: ShieldDefWithProvider) -> None:
async def register_shield(
self,
shield_id: str,
provider_shield_id: Optional[str],
provider_id: Optional[str],
params: Optional[Dict[str, Any]],
) -> None:
async with httpx.AsyncClient() as client:
response = await client.post(
f"{self.base_url}/shields/register",
json={
"shield": json.loads(shield.json()),
"shield_id": shield_id,
"provider_shield_id": provider_shield_id,
"provider_id": provider_id,
"params": params,
},
headers={"Content-Type": "application/json"},
)
response.raise_for_status()
async def get_shield(self, shield_type: str) -> Optional[ShieldDefWithProvider]:
async def get_shield(self, shield_id: str) -> Optional[Shield]:
async with httpx.AsyncClient() as client:
response = await client.get(
f"{self.base_url}/shields/get",
params={
"shield_type": shield_type,
"shield_id": shield_id,
},
headers={"Content-Type": "application/json"},
)
@ -61,7 +69,7 @@ class ShieldsClient(Shields):
if j is None:
return None
return ShieldDefWithProvider(**j)
return Shield(**j)
async def run_main(host: str, port: int, stream: bool):

View file

@ -4,48 +4,52 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
from typing import Any, Dict, List, Literal, Optional, Protocol, runtime_checkable
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, Field
from pydantic import BaseModel
from llama_stack.apis.resource import Resource, ResourceType
class CommonShieldFields(BaseModel):
params: Optional[Dict[str, Any]] = None
@json_schema_type
class ShieldType(Enum):
generic_content_shield = "generic_content_shield"
llama_guard = "llama_guard"
code_scanner = "code_scanner"
prompt_guard = "prompt_guard"
class Shield(CommonShieldFields, Resource):
"""A safety shield resource that can be used to check content"""
type: Literal[ResourceType.shield.value] = ResourceType.shield.value
@property
def shield_id(self) -> str:
return self.identifier
@property
def provider_shield_id(self) -> str:
return self.provider_resource_id
class ShieldDef(BaseModel):
identifier: str = Field(
description="A unique identifier for the shield type",
)
type: str = Field(
description="The type of shield this is; the value is one of the ShieldType enum"
)
params: Dict[str, Any] = Field(
default_factory=dict,
description="Any additional parameters needed for this shield",
)
@json_schema_type
class ShieldDefWithProvider(ShieldDef):
provider_id: str = Field(
description="The provider ID for this shield type",
)
class ShieldInput(CommonShieldFields):
shield_id: str
provider_id: Optional[str] = None
provider_shield_id: Optional[str] = None
@runtime_checkable
class Shields(Protocol):
@webmethod(route="/shields/list", method="GET")
async def list_shields(self) -> List[ShieldDefWithProvider]: ...
async def list_shields(self) -> List[Shield]: ...
@webmethod(route="/shields/get", method="GET")
async def get_shield(self, shield_type: str) -> Optional[ShieldDefWithProvider]: ...
async def get_shield(self, identifier: str) -> Optional[Shield]: ...
@webmethod(route="/shields/register", method="POST")
async def register_shield(self, shield: ShieldDefWithProvider) -> None: ...
async def register_shield(
self,
shield_id: str,
provider_shield_id: Optional[str] = None,
provider_id: Optional[str] = None,
params: Optional[Dict[str, Any]] = None,
) -> Shield: ...

View file

@ -9,15 +9,27 @@ import asyncio
import json
import os
import shutil
import time
from dataclasses import dataclass
from datetime import datetime
from functools import partial
from pathlib import Path
from typing import Dict, List
from typing import Dict, List, Optional
import httpx
from llama_models.datatypes import Model
from llama_models.sku_list import LlamaDownloadInfo
from pydantic import BaseModel
from rich.console import Console
from rich.progress import (
BarColumn,
DownloadColumn,
Progress,
TextColumn,
TimeRemainingColumn,
TransferSpeedColumn,
)
from termcolor import cprint
from llama_stack.cli.subcommand import Subcommand
@ -61,6 +73,13 @@ def setup_download_parser(parser: argparse.ArgumentParser) -> None:
required=False,
help="For source=meta, URL obtained from llama.meta.com after accepting license terms",
)
parser.add_argument(
"--max-parallel",
type=int,
required=False,
default=3,
help="Maximum number of concurrent downloads",
)
parser.add_argument(
"--ignore-patterns",
type=str,
@ -80,6 +99,245 @@ safetensors files to avoid downloading duplicate weights.
parser.set_defaults(func=partial(run_download_cmd, parser=parser))
@dataclass
class DownloadTask:
url: str
output_file: str
total_size: int = 0
downloaded_size: int = 0
task_id: Optional[int] = None
retries: int = 0
max_retries: int = 3
class DownloadError(Exception):
pass
class CustomTransferSpeedColumn(TransferSpeedColumn):
def render(self, task):
if task.finished:
return "-"
return super().render(task)
class ParallelDownloader:
def __init__(
self,
max_concurrent_downloads: int = 3,
buffer_size: int = 1024 * 1024,
timeout: int = 30,
):
self.max_concurrent_downloads = max_concurrent_downloads
self.buffer_size = buffer_size
self.timeout = timeout
self.console = Console()
self.progress = Progress(
TextColumn("[bold blue]{task.description}"),
BarColumn(bar_width=40),
"[progress.percentage]{task.percentage:>3.1f}%",
DownloadColumn(),
CustomTransferSpeedColumn(),
TimeRemainingColumn(),
console=self.console,
expand=True,
)
self.client_options = {
"timeout": httpx.Timeout(timeout),
"follow_redirects": True,
}
async def retry_with_exponential_backoff(
self, task: DownloadTask, func, *args, **kwargs
):
last_exception = None
for attempt in range(task.max_retries):
try:
return await func(*args, **kwargs)
except Exception as e:
last_exception = e
if attempt < task.max_retries - 1:
wait_time = min(30, 2**attempt) # Cap at 30 seconds
self.console.print(
f"[yellow]Attempt {attempt + 1}/{task.max_retries} failed, "
f"retrying in {wait_time} seconds: {str(e)}[/yellow]"
)
await asyncio.sleep(wait_time)
continue
raise last_exception
async def get_file_info(
self, client: httpx.AsyncClient, task: DownloadTask
) -> None:
async def _get_info():
response = await client.head(
task.url, headers={"Accept-Encoding": "identity"}, **self.client_options
)
response.raise_for_status()
return response
try:
response = await self.retry_with_exponential_backoff(task, _get_info)
task.url = str(response.url)
task.total_size = int(response.headers.get("Content-Length", 0))
if task.total_size == 0:
raise DownloadError(
f"Unable to determine file size for {task.output_file}. "
"The server might not support range requests."
)
# Update the progress bar's total size once we know it
if task.task_id is not None:
self.progress.update(task.task_id, total=task.total_size)
except httpx.HTTPError as e:
self.console.print(f"[red]Error getting file info: {str(e)}[/red]")
raise
def verify_file_integrity(self, task: DownloadTask) -> bool:
if not os.path.exists(task.output_file):
return False
return os.path.getsize(task.output_file) == task.total_size
async def download_chunk(
self, client: httpx.AsyncClient, task: DownloadTask, start: int, end: int
) -> None:
async def _download_chunk():
headers = {"Range": f"bytes={start}-{end}"}
async with client.stream(
"GET", task.url, headers=headers, **self.client_options
) as response:
response.raise_for_status()
with open(task.output_file, "ab") as file:
file.seek(start)
async for chunk in response.aiter_bytes(self.buffer_size):
file.write(chunk)
task.downloaded_size += len(chunk)
self.progress.update(
task.task_id,
completed=task.downloaded_size,
)
try:
await self.retry_with_exponential_backoff(task, _download_chunk)
except Exception as e:
raise DownloadError(
f"Failed to download chunk {start}-{end} after "
f"{task.max_retries} attempts: {str(e)}"
) from e
async def prepare_download(self, task: DownloadTask) -> None:
output_dir = os.path.dirname(task.output_file)
os.makedirs(output_dir, exist_ok=True)
if os.path.exists(task.output_file):
task.downloaded_size = os.path.getsize(task.output_file)
async def download_file(self, task: DownloadTask) -> None:
try:
async with httpx.AsyncClient(**self.client_options) as client:
await self.get_file_info(client, task)
# Check if file is already downloaded
if os.path.exists(task.output_file):
if self.verify_file_integrity(task):
self.console.print(
f"[green]Already downloaded {task.output_file}[/green]"
)
self.progress.update(task.task_id, completed=task.total_size)
return
await self.prepare_download(task)
try:
# Split the remaining download into chunks
chunk_size = 27_000_000_000 # Cloudfront max chunk size
chunks = []
current_pos = task.downloaded_size
while current_pos < task.total_size:
chunk_end = min(
current_pos + chunk_size - 1, task.total_size - 1
)
chunks.append((current_pos, chunk_end))
current_pos = chunk_end + 1
# Download chunks in sequence
for chunk_start, chunk_end in chunks:
await self.download_chunk(client, task, chunk_start, chunk_end)
except Exception as e:
raise DownloadError(f"Download failed: {str(e)}") from e
except Exception as e:
self.progress.update(
task.task_id, description=f"[red]Failed: {task.output_file}[/red]"
)
raise DownloadError(
f"Download failed for {task.output_file}: {str(e)}"
) from e
def has_disk_space(self, tasks: List[DownloadTask]) -> bool:
try:
total_remaining_size = sum(
task.total_size - task.downloaded_size for task in tasks
)
dir_path = os.path.dirname(os.path.abspath(tasks[0].output_file))
free_space = shutil.disk_usage(dir_path).free
# Add 10% buffer for safety
required_space = int(total_remaining_size * 1.1)
if free_space < required_space:
self.console.print(
f"[red]Not enough disk space. Required: {required_space // (1024*1024)} MB, "
f"Available: {free_space // (1024*1024)} MB[/red]"
)
return False
return True
except Exception as e:
raise DownloadError(f"Failed to check disk space: {str(e)}") from e
async def download_all(self, tasks: List[DownloadTask]) -> None:
if not tasks:
raise ValueError("No download tasks provided")
if not self.has_disk_space(tasks):
raise DownloadError("Insufficient disk space for downloads")
failed_tasks = []
with self.progress:
for task in tasks:
desc = f"Downloading {Path(task.output_file).name}"
task.task_id = self.progress.add_task(
desc, total=task.total_size, completed=task.downloaded_size
)
semaphore = asyncio.Semaphore(self.max_concurrent_downloads)
async def download_with_semaphore(task: DownloadTask):
async with semaphore:
try:
await self.download_file(task)
except Exception as e:
failed_tasks.append((task, str(e)))
await asyncio.gather(*(download_with_semaphore(task) for task in tasks))
if failed_tasks:
self.console.print("\n[red]Some downloads failed:[/red]")
for task, error in failed_tasks:
self.console.print(
f"[red]- {Path(task.output_file).name}: {error}[/red]"
)
raise DownloadError(f"{len(failed_tasks)} downloads failed")
def _hf_download(
model: "Model",
hf_token: str,
@ -120,63 +378,37 @@ def _hf_download(
print(f"\nSuccessfully downloaded model to {true_output_dir}")
def _meta_download(model: "Model", meta_url: str, info: "LlamaDownloadInfo"):
def _meta_download(
model: "Model",
meta_url: str,
info: "LlamaDownloadInfo",
max_concurrent_downloads: int,
):
from llama_stack.distribution.utils.model_utils import model_local_dir
output_dir = Path(model_local_dir(model.descriptor()))
os.makedirs(output_dir, exist_ok=True)
# I believe we can use some concurrency here if needed but not sure it is worth it
# Create download tasks for each file
tasks = []
for f in info.files:
output_file = str(output_dir / f)
url = meta_url.replace("*", f"{info.folder}/{f}")
total_size = info.pth_size if "consolidated" in f else 0
cprint(f"Downloading `{f}`...", "white")
downloader = ResumableDownloader(url, output_file, total_size)
asyncio.run(downloader.download())
tasks.append(
DownloadTask(
url=url, output_file=output_file, total_size=total_size, max_retries=3
)
)
# Initialize and run parallel downloader
downloader = ParallelDownloader(max_concurrent_downloads=max_concurrent_downloads)
asyncio.run(downloader.download_all(tasks))
print(f"\nSuccessfully downloaded model to {output_dir}")
cprint(f"\nMD5 Checksums are at: {output_dir / 'checklist.chk'}", "white")
def run_download_cmd(args: argparse.Namespace, parser: argparse.ArgumentParser):
from llama_models.sku_list import llama_meta_net_info, resolve_model
from .model.safety_models import prompt_guard_download_info, prompt_guard_model_sku
if args.manifest_file:
_download_from_manifest(args.manifest_file)
return
if args.model_id is None:
parser.error("Please provide a model id")
return
# Check if model_id is a comma-separated list
model_ids = [model_id.strip() for model_id in args.model_id.split(",")]
prompt_guard = prompt_guard_model_sku()
for model_id in model_ids:
if model_id == prompt_guard.model_id:
model = prompt_guard
info = prompt_guard_download_info()
else:
model = resolve_model(model_id)
if model is None:
parser.error(f"Model {model_id} not found")
continue
info = llama_meta_net_info(model)
if args.source == "huggingface":
_hf_download(model, args.hf_token, args.ignore_patterns, parser)
else:
meta_url = args.meta_url or input(
f"Please provide the signed URL for model {model_id} you received via email after visiting https://www.llama.com/llama-downloads/ (e.g., https://llama3-1.llamameta.net/*?Policy...): "
)
assert "llamameta.net" in meta_url
_meta_download(model, meta_url, info)
class ModelEntry(BaseModel):
model_id: str
files: Dict[str, str]
@ -190,7 +422,7 @@ class Manifest(BaseModel):
expires_on: datetime
def _download_from_manifest(manifest_file: str):
def _download_from_manifest(manifest_file: str, max_concurrent_downloads: int):
from llama_stack.distribution.utils.model_utils import model_local_dir
with open(manifest_file, "r") as f:
@ -200,143 +432,88 @@ def _download_from_manifest(manifest_file: str):
if datetime.now() > manifest.expires_on:
raise ValueError(f"Manifest URLs have expired on {manifest.expires_on}")
console = Console()
for entry in manifest.models:
print(f"Downloading model {entry.model_id}...")
console.print(f"[blue]Downloading model {entry.model_id}...[/blue]")
output_dir = Path(model_local_dir(entry.model_id))
os.makedirs(output_dir, exist_ok=True)
if any(output_dir.iterdir()):
cprint(f"Output directory {output_dir} is not empty.", "red")
console.print(
f"[yellow]Output directory {output_dir} is not empty.[/yellow]"
)
while True:
resp = input(
"Do you want to (C)ontinue download or (R)estart completely? (continue/restart): "
)
if resp.lower() == "restart" or resp.lower() == "r":
if resp.lower() in ["restart", "r"]:
shutil.rmtree(output_dir)
os.makedirs(output_dir, exist_ok=True)
break
elif resp.lower() == "continue" or resp.lower() == "c":
print("Continuing download...")
elif resp.lower() in ["continue", "c"]:
console.print("[blue]Continuing download...[/blue]")
break
else:
cprint("Invalid response. Please try again.", "red")
console.print("[red]Invalid response. Please try again.[/red]")
for fname, url in entry.files.items():
output_file = str(output_dir / fname)
downloader = ResumableDownloader(url, output_file)
asyncio.run(downloader.download())
# Create download tasks for all files in the manifest
tasks = [
DownloadTask(url=url, output_file=str(output_dir / fname), max_retries=3)
for fname, url in entry.files.items()
]
# Initialize and run parallel downloader
downloader = ParallelDownloader(
max_concurrent_downloads=max_concurrent_downloads
)
asyncio.run(downloader.download_all(tasks))
class ResumableDownloader:
def __init__(
self,
url: str,
output_file: str,
total_size: int = 0,
buffer_size: int = 32 * 1024,
):
self.url = url
self.output_file = output_file
self.buffer_size = buffer_size
self.total_size = total_size
self.downloaded_size = 0
self.start_size = 0
self.start_time = 0
async def get_file_info(self, client: httpx.AsyncClient) -> None:
if self.total_size > 0:
def run_download_cmd(args: argparse.Namespace, parser: argparse.ArgumentParser):
"""Main download command handler"""
try:
if args.manifest_file:
_download_from_manifest(args.manifest_file, args.max_parallel)
return
# Force disable compression when trying to retrieve file size
response = await client.head(
self.url, follow_redirects=True, headers={"Accept-Encoding": "identity"}
)
response.raise_for_status()
self.url = str(response.url) # Update URL in case of redirects
self.total_size = int(response.headers.get("Content-Length", 0))
if self.total_size == 0:
raise ValueError(
"Unable to determine file size. The server might not support range requests."
)
if args.model_id is None:
parser.error("Please provide a model id")
return
async def download(self) -> None:
self.start_time = time.time()
async with httpx.AsyncClient(follow_redirects=True) as client:
await self.get_file_info(client)
# Handle comma-separated model IDs
model_ids = [model_id.strip() for model_id in args.model_id.split(",")]
if os.path.exists(self.output_file):
self.downloaded_size = os.path.getsize(self.output_file)
self.start_size = self.downloaded_size
if self.downloaded_size >= self.total_size:
print(f"Already downloaded `{self.output_file}`, skipping...")
return
from llama_models.sku_list import llama_meta_net_info, resolve_model
additional_size = self.total_size - self.downloaded_size
if not self.has_disk_space(additional_size):
M = 1024 * 1024 # noqa
print(
f"Not enough disk space to download `{self.output_file}`. "
f"Required: {(additional_size // M):.2f} MB"
)
raise ValueError(
f"Not enough disk space to download `{self.output_file}`"
)
while True:
if self.downloaded_size >= self.total_size:
break
# Cloudfront has a max-size limit
max_chunk_size = 27_000_000_000
request_size = min(
self.total_size - self.downloaded_size, max_chunk_size
)
headers = {
"Range": f"bytes={self.downloaded_size}-{self.downloaded_size + request_size}"
}
print(f"Downloading `{self.output_file}`....{headers}")
try:
async with client.stream(
"GET", self.url, headers=headers
) as response:
response.raise_for_status()
with open(self.output_file, "ab") as file:
async for chunk in response.aiter_bytes(self.buffer_size):
file.write(chunk)
self.downloaded_size += len(chunk)
self.print_progress()
except httpx.HTTPError as e:
print(f"\nDownload interrupted: {e}")
print("You can resume the download by running the script again.")
except Exception as e:
print(f"\nAn error occurred: {e}")
print(f"\nFinished downloading `{self.output_file}`....")
def print_progress(self) -> None:
percent = (self.downloaded_size / self.total_size) * 100
bar_length = 50
filled_length = int(bar_length * self.downloaded_size // self.total_size)
bar = "" * filled_length + "-" * (bar_length - filled_length)
elapsed_time = time.time() - self.start_time
M = 1024 * 1024 # noqa
speed = (
(self.downloaded_size - self.start_size) / (elapsed_time * M)
if elapsed_time > 0
else 0
)
print(
f"\rProgress: |{bar}| {percent:.2f}% "
f"({self.downloaded_size // M}/{self.total_size // M} MB) "
f"Speed: {speed:.2f} MiB/s",
end="",
flush=True,
from .model.safety_models import (
prompt_guard_download_info,
prompt_guard_model_sku,
)
def has_disk_space(self, file_size: int) -> bool:
dir_path = os.path.dirname(os.path.abspath(self.output_file))
free_space = shutil.disk_usage(dir_path).free
return free_space > file_size
prompt_guard = prompt_guard_model_sku()
for model_id in model_ids:
if model_id == prompt_guard.model_id:
model = prompt_guard
info = prompt_guard_download_info()
else:
model = resolve_model(model_id)
if model is None:
parser.error(f"Model {model_id} not found")
continue
info = llama_meta_net_info(model)
if args.source == "huggingface":
_hf_download(model, args.hf_token, args.ignore_patterns, parser)
else:
meta_url = args.meta_url or input(
f"Please provide the signed URL for model {model_id} you received via email "
f"after visiting https://www.llama.com/llama-downloads/ "
f"(e.g., https://llama3-1.llamameta.net/*?Policy...): "
)
if "llamameta.net" not in meta_url:
parser.error("Invalid Meta URL provided")
_meta_download(model, meta_url, info, args.max_parallel)
except Exception as e:
parser.error(f"Download failed: {str(e)}")

View file

@ -9,6 +9,7 @@ import argparse
from .download import Download
from .model import ModelParser
from .stack import StackParser
from .verify_download import VerifyDownload
class LlamaCLIParser:
@ -27,9 +28,10 @@ class LlamaCLIParser:
subparsers = self.parser.add_subparsers(title="subcommands")
# Add sub-commands
Download.create(subparsers)
ModelParser.create(subparsers)
StackParser.create(subparsers)
Download.create(subparsers)
VerifyDownload.create(subparsers)
def parse_args(self) -> argparse.Namespace:
return self.parser.parse_args()

View file

@ -10,6 +10,7 @@ from llama_stack.cli.model.describe import ModelDescribe
from llama_stack.cli.model.download import ModelDownload
from llama_stack.cli.model.list import ModelList
from llama_stack.cli.model.prompt_format import ModelPromptFormat
from llama_stack.cli.model.verify_download import ModelVerifyDownload
from llama_stack.cli.subcommand import Subcommand
@ -32,3 +33,4 @@ class ModelParser(Subcommand):
ModelList.create(subparsers)
ModelPromptFormat.create(subparsers)
ModelDescribe.create(subparsers)
ModelVerifyDownload.create(subparsers)

View file

@ -0,0 +1,24 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
from llama_stack.cli.subcommand import Subcommand
class ModelVerifyDownload(Subcommand):
def __init__(self, subparsers: argparse._SubParsersAction):
super().__init__()
self.parser = subparsers.add_parser(
"verify-download",
prog="llama model verify-download",
description="Verify the downloaded checkpoints' checksums",
formatter_class=argparse.RawTextHelpFormatter,
)
from llama_stack.cli.verify_download import setup_verify_download_parser
setup_verify_download_parser(self.parser)

View file

@ -12,6 +12,10 @@ import os
from functools import lru_cache
from pathlib import Path
from llama_stack.distribution.distribution import get_provider_registry
from llama_stack.distribution.utils.dynamic import instantiate_class_type
TEMPLATES_PATH = Path(os.path.relpath(__file__)).parent.parent.parent / "templates"
@ -176,6 +180,66 @@ class StackBuild(Subcommand):
return
self._run_stack_build_command_from_build_config(build_config)
def _generate_run_config(self, build_config: BuildConfig, build_dir: Path) -> None:
"""
Generate a run.yaml template file for user to edit from a build.yaml file
"""
import json
import yaml
from termcolor import cprint
from llama_stack.distribution.build import ImageType
apis = list(build_config.distribution_spec.providers.keys())
run_config = StackRunConfig(
built_at=datetime.now(),
docker_image=(
build_config.name
if build_config.image_type == ImageType.docker.value
else None
),
image_name=build_config.name,
conda_env=(
build_config.name
if build_config.image_type == ImageType.conda.value
else None
),
apis=apis,
providers={},
)
# build providers dict
provider_registry = get_provider_registry()
for api in apis:
run_config.providers[api] = []
provider_types = build_config.distribution_spec.providers[api]
if isinstance(provider_types, str):
provider_types = [provider_types]
for i, provider_type in enumerate(provider_types):
p_spec = Provider(
provider_id=f"{provider_type}-{i}",
provider_type=provider_type,
config={},
)
config_type = instantiate_class_type(
provider_registry[Api(api)][provider_type].config_class
)
p_spec.config = config_type()
run_config.providers[api].append(p_spec)
os.makedirs(build_dir, exist_ok=True)
run_config_file = build_dir / f"{build_config.name}-run.yaml"
with open(run_config_file, "w") as f:
to_write = json.loads(run_config.model_dump_json())
f.write(yaml.dump(to_write, sort_keys=False))
cprint(
f"You can now edit {run_config_file} and run `llama stack run {run_config_file}`",
color="green",
)
def _run_stack_build_command_from_build_config(
self, build_config: BuildConfig
) -> None:
@ -183,48 +247,24 @@ class StackBuild(Subcommand):
import os
import yaml
from termcolor import cprint
from llama_stack.distribution.build import build_image, ImageType
from llama_stack.distribution.build import build_image
from llama_stack.distribution.utils.config_dirs import DISTRIBS_BASE_DIR
from llama_stack.distribution.utils.serialize import EnumEncoder
# save build.yaml spec for building same distribution again
if build_config.image_type == ImageType.docker.value:
# docker needs build file to be in the llama-stack repo dir to be able to copy over to the image
llama_stack_path = Path(
os.path.abspath(__file__)
).parent.parent.parent.parent
build_dir = llama_stack_path / "tmp/configs/"
else:
build_dir = DISTRIBS_BASE_DIR / f"llamastack-{build_config.name}"
build_dir = DISTRIBS_BASE_DIR / f"llamastack-{build_config.name}"
os.makedirs(build_dir, exist_ok=True)
build_file_path = build_dir / f"{build_config.name}-build.yaml"
with open(build_file_path, "w") as f:
to_write = json.loads(json.dumps(build_config.dict(), cls=EnumEncoder))
to_write = json.loads(build_config.model_dump_json())
f.write(yaml.dump(to_write, sort_keys=False))
return_code = build_image(build_config, build_file_path)
if return_code != 0:
return
configure_name = (
build_config.name
if build_config.image_type == "conda"
else (f"llamastack-{build_config.name}")
)
if build_config.image_type == "conda":
cprint(
f"You can now run `llama stack configure {configure_name}`",
color="green",
)
else:
cprint(
f"You can now edit your run.yaml file and run `docker run -it -p 5000:5000 {build_config.name}`. See full command in llama-stack/distributions/",
color="green",
)
self._generate_run_config(build_config, build_dir)
def _run_template_list_cmd(self, args: argparse.Namespace) -> None:
import json

View file

@ -7,8 +7,6 @@
import argparse
from llama_stack.cli.subcommand import Subcommand
from llama_stack.distribution.utils.config_dirs import BUILDS_BASE_DIR
from llama_stack.distribution.datatypes import * # noqa: F403
class StackConfigure(Subcommand):
@ -39,123 +37,10 @@ class StackConfigure(Subcommand):
)
def _run_stack_configure_cmd(self, args: argparse.Namespace) -> None:
import json
import os
import subprocess
from pathlib import Path
import pkg_resources
import yaml
from termcolor import cprint
from llama_stack.distribution.build import ImageType
from llama_stack.distribution.utils.exec import run_with_pty
docker_image = None
build_config_file = Path(args.config)
if build_config_file.exists():
with open(build_config_file, "r") as f:
build_config = BuildConfig(**yaml.safe_load(f))
self._configure_llama_distribution(build_config, args.output_dir)
return
conda_dir = (
Path(os.path.expanduser("~/.conda/envs")) / f"llamastack-{args.config}"
)
output = subprocess.check_output(["bash", "-c", "conda info --json"])
conda_envs = json.loads(output.decode("utf-8"))["envs"]
for x in conda_envs:
if x.endswith(f"/llamastack-{args.config}"):
conda_dir = Path(x)
break
build_config_file = Path(conda_dir) / f"{args.config}-build.yaml"
if build_config_file.exists():
with open(build_config_file, "r") as f:
build_config = BuildConfig(**yaml.safe_load(f))
cprint(f"Using {build_config_file}...", "green")
self._configure_llama_distribution(build_config, args.output_dir)
return
docker_image = args.config
builds_dir = BUILDS_BASE_DIR / ImageType.docker.value
if args.output_dir:
builds_dir = Path(output_dir)
os.makedirs(builds_dir, exist_ok=True)
script = pkg_resources.resource_filename(
"llama_stack", "distribution/configure_container.sh"
)
script_args = [script, docker_image, str(builds_dir)]
return_code = run_with_pty(script_args)
if return_code != 0:
self.parser.error(
f"Failed to configure container {docker_image} with return code {return_code}. Please run `llama stack build` first. "
)
def _configure_llama_distribution(
self,
build_config: BuildConfig,
output_dir: Optional[str] = None,
):
import json
import os
from pathlib import Path
import yaml
from termcolor import cprint
from llama_stack.distribution.configure import (
configure_api_providers,
parse_and_maybe_upgrade_config,
)
from llama_stack.distribution.utils.serialize import EnumEncoder
builds_dir = BUILDS_BASE_DIR / build_config.image_type
if output_dir:
builds_dir = Path(output_dir)
os.makedirs(builds_dir, exist_ok=True)
image_name = build_config.name.replace("::", "-")
run_config_file = builds_dir / f"{image_name}-run.yaml"
if run_config_file.exists():
cprint(
f"Configuration already exists at `{str(run_config_file)}`. Will overwrite...",
"yellow",
attrs=["bold"],
)
config_dict = yaml.safe_load(run_config_file.read_text())
config = parse_and_maybe_upgrade_config(config_dict)
else:
config = StackRunConfig(
built_at=datetime.now(),
image_name=image_name,
apis=list(build_config.distribution_spec.providers.keys()),
providers={},
)
config = configure_api_providers(config, build_config.distribution_spec)
config.docker_image = (
image_name if build_config.image_type == "docker" else None
)
config.conda_env = image_name if build_config.image_type == "conda" else None
with open(run_config_file, "w") as f:
to_write = json.loads(json.dumps(config.dict(), cls=EnumEncoder))
f.write(yaml.dump(to_write, sort_keys=False))
cprint(
f"> YAML configuration has been written to `{run_config_file}`.",
color="blue",
)
cprint(
f"You can now run `llama stack run {image_name} --port PORT`",
color="green",
self.parser.error(
"""
DEPRECATED! llama stack configure has been deprecated.
Please use llama stack run <path/to/run.yaml> instead.
Please see example run.yaml in /distributions folder.
"""
)

View file

@ -45,7 +45,6 @@ class StackRun(Subcommand):
import pkg_resources
import yaml
from termcolor import cprint
from llama_stack.distribution.build import ImageType
from llama_stack.distribution.configure import parse_and_maybe_upgrade_config
@ -71,14 +70,12 @@ class StackRun(Subcommand):
if not config_file.exists():
self.parser.error(
f"File {str(config_file)} does not exist. Please run `llama stack build` and `llama stack configure <name>` to generate a run.yaml file"
f"File {str(config_file)} does not exist. Please run `llama stack build` to generate (and optionally edit) a run.yaml file"
)
return
cprint(f"Using config `{config_file}`", "green")
with open(config_file, "r") as f:
config_dict = yaml.safe_load(config_file.read_text())
config = parse_and_maybe_upgrade_config(config_dict)
config_dict = yaml.safe_load(config_file.read_text())
config = parse_and_maybe_upgrade_config(config_dict)
if config.docker_image:
script = pkg_resources.resource_filename(

View file

@ -25,11 +25,11 @@ def up_to_date_config():
providers:
inference:
- provider_id: provider1
provider_type: meta-reference
provider_type: inline::meta-reference
config: {{}}
safety:
- provider_id: provider1
provider_type: meta-reference
provider_type: inline::meta-reference
config:
llama_guard_shield:
model: Llama-Guard-3-1B
@ -39,7 +39,7 @@ def up_to_date_config():
enable_prompt_guard: false
memory:
- provider_id: provider1
provider_type: meta-reference
provider_type: inline::meta-reference
config: {{}}
""".format(
version=LLAMA_STACK_RUN_CONFIG_VERSION, built_at=datetime.now().isoformat()
@ -61,13 +61,13 @@ def old_config():
host: localhost
port: 11434
routing_key: Llama3.2-1B-Instruct
- provider_type: meta-reference
- provider_type: inline::meta-reference
config:
model: Llama3.1-8B-Instruct
routing_key: Llama3.1-8B-Instruct
safety:
- routing_key: ["shield1", "shield2"]
provider_type: meta-reference
provider_type: inline::meta-reference
config:
llama_guard_shield:
model: Llama-Guard-3-1B
@ -77,7 +77,7 @@ def old_config():
enable_prompt_guard: false
memory:
- routing_key: vector
provider_type: meta-reference
provider_type: inline::meta-reference
config: {{}}
api_providers:
telemetry:

View file

@ -0,0 +1,144 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
import hashlib
from dataclasses import dataclass
from functools import partial
from pathlib import Path
from typing import Dict, List, Optional
from rich.console import Console
from rich.progress import Progress, SpinnerColumn, TextColumn
from llama_stack.cli.subcommand import Subcommand
@dataclass
class VerificationResult:
filename: str
expected_hash: str
actual_hash: Optional[str]
exists: bool
matches: bool
class VerifyDownload(Subcommand):
"""Llama cli for verifying downloaded model files"""
def __init__(self, subparsers: argparse._SubParsersAction):
super().__init__()
self.parser = subparsers.add_parser(
"verify-download",
prog="llama verify-download",
description="Verify integrity of downloaded model files",
formatter_class=argparse.RawTextHelpFormatter,
)
setup_verify_download_parser(self.parser)
def setup_verify_download_parser(parser: argparse.ArgumentParser) -> None:
parser.add_argument(
"--model-id",
required=True,
help="Model ID to verify",
)
parser.set_defaults(func=partial(run_verify_cmd, parser=parser))
def calculate_md5(filepath: Path, chunk_size: int = 8192) -> str:
md5_hash = hashlib.md5()
with open(filepath, "rb") as f:
for chunk in iter(lambda: f.read(chunk_size), b""):
md5_hash.update(chunk)
return md5_hash.hexdigest()
def load_checksums(checklist_path: Path) -> Dict[str, str]:
checksums = {}
with open(checklist_path, "r") as f:
for line in f:
if line.strip():
md5sum, filepath = line.strip().split(" ", 1)
# Remove leading './' if present
filepath = filepath.lstrip("./")
checksums[filepath] = md5sum
return checksums
def verify_files(
model_dir: Path, checksums: Dict[str, str], console: Console
) -> List[VerificationResult]:
results = []
with Progress(
SpinnerColumn(),
TextColumn("[progress.description]{task.description}"),
console=console,
) as progress:
for filepath, expected_hash in checksums.items():
full_path = model_dir / filepath
task_id = progress.add_task(f"Verifying {filepath}...", total=None)
exists = full_path.exists()
actual_hash = None
matches = False
if exists:
actual_hash = calculate_md5(full_path)
matches = actual_hash == expected_hash
results.append(
VerificationResult(
filename=filepath,
expected_hash=expected_hash,
actual_hash=actual_hash,
exists=exists,
matches=matches,
)
)
progress.remove_task(task_id)
return results
def run_verify_cmd(args: argparse.Namespace, parser: argparse.ArgumentParser):
from llama_stack.distribution.utils.model_utils import model_local_dir
console = Console()
model_dir = Path(model_local_dir(args.model_id))
checklist_path = model_dir / "checklist.chk"
if not model_dir.exists():
parser.error(f"Model directory not found: {model_dir}")
if not checklist_path.exists():
parser.error(f"Checklist file not found: {checklist_path}")
checksums = load_checksums(checklist_path)
results = verify_files(model_dir, checksums, console)
# Print results
console.print("\nVerification Results:")
all_good = True
for result in results:
if not result.exists:
console.print(f"[red]❌ {result.filename}: File not found[/red]")
all_good = False
elif not result.matches:
console.print(
f"[red]❌ {result.filename}: Hash mismatch[/red]\n"
f" Expected: {result.expected_hash}\n"
f" Got: {result.actual_hash}"
)
all_good = False
else:
console.print(f"[green]✓ {result.filename}: Verified[/green]")
if all_good:
console.print("\n[green]All files verified successfully![/green]")

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from enum import Enum
from typing import List, Optional
from typing import List
import pkg_resources
from pydantic import BaseModel
@ -25,6 +25,7 @@ from llama_stack.distribution.utils.config_dirs import BUILDS_BASE_DIR
# These are the dependencies needed by the distribution server.
# `llama-stack` is automatically installed by the installation script.
SERVER_DEPENDENCIES = [
"aiosqlite",
"fastapi",
"fire",
"httpx",
@ -37,28 +38,19 @@ class ImageType(Enum):
conda = "conda"
class Dependencies(BaseModel):
pip_packages: List[str]
docker_image: Optional[str] = None
class ApiInput(BaseModel):
api: Api
provider: str
def build_image(build_config: BuildConfig, build_file_path: Path):
package_deps = Dependencies(
docker_image=build_config.distribution_spec.docker_image or "python:3.10-slim",
pip_packages=SERVER_DEPENDENCIES,
)
# extend package dependencies based on providers spec
def get_provider_dependencies(
config_providers: Dict[str, List[Provider]]
) -> tuple[list[str], list[str]]:
"""Get normal and special dependencies from provider configuration."""
all_providers = get_provider_registry()
for (
api_str,
provider_or_providers,
) in build_config.distribution_spec.providers.items():
deps = []
for api_str, provider_or_providers in config_providers.items():
providers_for_api = all_providers[Api(api_str)]
providers = (
@ -68,25 +60,50 @@ def build_image(build_config: BuildConfig, build_file_path: Path):
)
for provider in providers:
if provider not in providers_for_api:
# Providers from BuildConfig and RunConfig are subtly different  not great
provider_type = (
provider if isinstance(provider, str) else provider.provider_type
)
if provider_type not in providers_for_api:
raise ValueError(
f"Provider `{provider}` is not available for API `{api_str}`"
)
provider_spec = providers_for_api[provider]
package_deps.pip_packages.extend(provider_spec.pip_packages)
provider_spec = providers_for_api[provider_type]
deps.extend(provider_spec.pip_packages)
if provider_spec.docker_image:
raise ValueError("A stack's dependencies cannot have a docker image")
normal_deps = []
special_deps = []
deps = []
for package in package_deps.pip_packages:
for package in deps:
if "--no-deps" in package or "--index-url" in package:
special_deps.append(package)
else:
deps.append(package)
deps = list(set(deps))
special_deps = list(set(special_deps))
normal_deps.append(package)
return list(set(normal_deps)), list(set(special_deps))
def print_pip_install_help(providers: Dict[str, List[Provider]]):
normal_deps, special_deps = get_provider_dependencies(providers)
print(
f"Please install needed dependencies using the following commands:\n\n\tpip install {' '.join(normal_deps)}"
)
for special_dep in special_deps:
print(f"\tpip install {special_dep}")
print()
def build_image(build_config: BuildConfig, build_file_path: Path):
docker_image = build_config.distribution_spec.docker_image or "python:3.10-slim"
normal_deps, special_deps = get_provider_dependencies(
build_config.distribution_spec.providers
)
normal_deps += SERVER_DEPENDENCIES
if build_config.image_type == ImageType.docker.value:
script = pkg_resources.resource_filename(
@ -95,10 +112,10 @@ def build_image(build_config: BuildConfig, build_file_path: Path):
args = [
script,
build_config.name,
package_deps.docker_image,
docker_image,
str(build_file_path),
str(BUILDS_BASE_DIR / ImageType.docker.value),
" ".join(deps),
" ".join(normal_deps),
]
else:
script = pkg_resources.resource_filename(
@ -108,7 +125,7 @@ def build_image(build_config: BuildConfig, build_file_path: Path):
script,
build_config.name,
str(build_file_path),
" ".join(deps),
" ".join(normal_deps),
]
if special_deps:

View file

@ -36,7 +36,6 @@ SCRIPT_DIR=$(dirname "$(readlink -f "$0")")
REPO_DIR=$(dirname $(dirname "$SCRIPT_DIR"))
DOCKER_BINARY=${DOCKER_BINARY:-docker}
DOCKER_OPTS=${DOCKER_OPTS:-}
REPO_CONFIGS_DIR="$REPO_DIR/tmp/configs"
TEMP_DIR=$(mktemp -d)
@ -65,6 +64,19 @@ RUN apt-get update && apt-get install -y \
EOF
# Add pip dependencies first since llama-stack is what will change most often
# so we can reuse layers.
if [ -n "$pip_dependencies" ]; then
add_to_docker "RUN pip install --no-cache $pip_dependencies"
fi
if [ -n "$special_pip_deps" ]; then
IFS='#' read -ra parts <<<"$special_pip_deps"
for part in "${parts[@]}"; do
add_to_docker "RUN pip install --no-cache $part"
done
fi
stack_mount="/app/llama-stack-source"
models_mount="/app/llama-models-source"
@ -79,7 +91,16 @@ if [ -n "$LLAMA_STACK_DIR" ]; then
# rebuild. This is just for development convenience.
add_to_docker "RUN pip install --no-cache -e $stack_mount"
else
add_to_docker "RUN pip install --no-cache llama-stack"
if [ -n "$TEST_PYPI_VERSION" ]; then
# these packages are damaged in test-pypi, so install them first
add_to_docker "RUN pip install fastapi libcst"
add_to_docker <<EOF
RUN pip install --no-cache --extra-index-url https://test.pypi.org/simple/ \
llama-models==$TEST_PYPI_VERSION llama-stack==$TEST_PYPI_VERSION
EOF
else
add_to_docker "RUN pip install --no-cache llama-stack"
fi
fi
if [ -n "$LLAMA_MODELS_DIR" ]; then
@ -95,16 +116,6 @@ RUN pip install --no-cache $models_mount
EOF
fi
if [ -n "$pip_dependencies" ]; then
add_to_docker "RUN pip install --no-cache $pip_dependencies"
fi
if [ -n "$special_pip_deps" ]; then
IFS='#' read -ra parts <<<"$special_pip_deps"
for part in "${parts[@]}"; do
add_to_docker "RUN pip install --no-cache $part"
done
fi
add_to_docker <<EOF
@ -115,8 +126,6 @@ ENTRYPOINT ["python", "-m", "llama_stack.distribution.server.server"]
EOF
add_to_docker "ADD tmp/configs/$(basename "$build_file_path") ./llamastack-build.yaml"
printf "Dockerfile created successfully in $TEMP_DIR/Dockerfile"
cat $TEMP_DIR/Dockerfile
printf "\n"
@ -134,11 +143,32 @@ if command -v selinuxenabled &>/dev/null && selinuxenabled; then
DOCKER_OPTS="$DOCKER_OPTS --security-opt label=disable"
fi
# Set version tag based on PyPI version
if [ -n "$TEST_PYPI_VERSION" ]; then
version_tag="test-$TEST_PYPI_VERSION"
else
URL="https://pypi.org/pypi/llama-stack/json"
version_tag=$(curl -s $URL | jq -r '.info.version')
fi
# Add version tag to image name
image_tag="$image_name:$version_tag"
# Detect platform architecture
ARCH=$(uname -m)
if [ "$ARCH" = "arm64" ] || [ "$ARCH" = "aarch64" ]; then
PLATFORM="--platform linux/arm64"
elif [ "$ARCH" = "x86_64" ]; then
PLATFORM="--platform linux/amd64"
else
echo "Unsupported architecture: $ARCH"
exit 1
fi
set -x
$DOCKER_BINARY build $DOCKER_OPTS -t $image_name -f "$TEMP_DIR/Dockerfile" "$REPO_DIR" $mounts
$DOCKER_BINARY build $DOCKER_OPTS $PLATFORM -t $image_tag -f "$TEMP_DIR/Dockerfile" "$REPO_DIR" $mounts
# clean up tmp/configs
rm -rf $REPO_CONFIGS_DIR
set +x
echo "Success!"

View file

@ -20,21 +20,17 @@ from llama_stack.providers.datatypes import RemoteProviderConfig
_CLIENT_CLASSES = {}
async def get_client_impl(
protocol, additional_protocol, config: RemoteProviderConfig, _deps: Any
):
client_class = create_api_client_class(protocol, additional_protocol)
async def get_client_impl(protocol, config: RemoteProviderConfig, _deps: Any):
client_class = create_api_client_class(protocol)
impl = client_class(config.url)
await impl.initialize()
return impl
def create_api_client_class(protocol, additional_protocol) -> Type:
def create_api_client_class(protocol) -> Type:
if protocol in _CLIENT_CLASSES:
return _CLIENT_CLASSES[protocol]
protocols = [protocol, additional_protocol] if additional_protocol else [protocol]
class APIClient:
def __init__(self, base_url: str):
print(f"({protocol.__name__}) Connecting to {base_url}")
@ -42,11 +38,10 @@ def create_api_client_class(protocol, additional_protocol) -> Type:
self.routes = {}
# Store routes for this protocol
for p in protocols:
for name, method in inspect.getmembers(p):
if hasattr(method, "__webmethod__"):
sig = inspect.signature(method)
self.routes[name] = (method.__webmethod__, sig)
for name, method in inspect.getmembers(protocol):
if hasattr(method, "__webmethod__"):
sig = inspect.signature(method)
self.routes[name] = (method.__webmethod__, sig)
async def initialize(self):
pass
@ -83,6 +78,7 @@ def create_api_client_class(protocol, additional_protocol) -> Type:
j = response.json()
if j is None:
return None
# print(f"({protocol.__name__}) Returning {j}, type {return_type}")
return parse_obj_as(return_type, j)
async def _call_streaming(self, method_name: str, *args, **kwargs) -> Any:
@ -102,14 +98,15 @@ def create_api_client_class(protocol, additional_protocol) -> Type:
if line.startswith("data:"):
data = line[len("data: ") :]
try:
data = json.loads(data)
if "error" in data:
cprint(data, "red")
continue
yield parse_obj_as(return_type, json.loads(data))
yield parse_obj_as(return_type, data)
except Exception as e:
print(data)
print(f"Error with parsing or validation: {e}")
print(data)
def httpx_request_params(self, method_name: str, *args, **kwargs) -> dict:
webmethod, sig = self.routes[method_name]
@ -141,27 +138,33 @@ def create_api_client_class(protocol, additional_protocol) -> Type:
else:
data.update(convert(kwargs))
return dict(
ret = dict(
method=webmethod.method or "POST",
url=url,
headers={"Content-Type": "application/json"},
params=params,
json=data,
headers={
"Accept": "application/json",
"Content-Type": "application/json",
},
timeout=30,
)
if params:
ret["params"] = params
if data:
ret["json"] = data
return ret
# Add protocol methods to the wrapper
for p in protocols:
for name, method in inspect.getmembers(p):
if hasattr(method, "__webmethod__"):
for name, method in inspect.getmembers(protocol):
if hasattr(method, "__webmethod__"):
async def method_impl(self, *args, method_name=name, **kwargs):
return await self.__acall__(method_name, *args, **kwargs)
async def method_impl(self, *args, method_name=name, **kwargs):
return await self.__acall__(method_name, *args, **kwargs)
method_impl.__name__ = name
method_impl.__qualname__ = f"APIClient.{name}"
method_impl.__signature__ = inspect.signature(method)
setattr(APIClient, name, method_impl)
method_impl.__name__ = name
method_impl.__qualname__ = f"APIClient.{name}"
method_impl.__signature__ = inspect.signature(method)
setattr(APIClient, name, method_impl)
# Name the class after the protocol
APIClient.__name__ = f"{protocol.__name__}Client"

View file

@ -17,10 +17,13 @@ from llama_stack.apis.memory_banks import * # noqa: F403
from llama_stack.apis.datasets import * # noqa: F403
from llama_stack.apis.scoring_functions import * # noqa: F403
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.eval import Eval
from llama_stack.apis.eval_tasks import EvalTaskInput
from llama_stack.apis.inference import Inference
from llama_stack.apis.memory import Memory
from llama_stack.apis.safety import Safety
from llama_stack.apis.scoring import Scoring
from llama_stack.providers.utils.kvstore.config import KVStoreConfig
LLAMA_STACK_BUILD_CONFIG_VERSION = "2"
LLAMA_STACK_RUN_CONFIG_VERSION = "2"
@ -30,19 +33,25 @@ RoutingKey = Union[str, List[str]]
RoutableObject = Union[
ModelDef,
ShieldDef,
MemoryBankDef,
DatasetDef,
ScoringFnDef,
Model,
Shield,
MemoryBank,
Dataset,
ScoringFn,
EvalTask,
]
RoutableObjectWithProvider = Union[
ModelDefWithProvider,
ShieldDefWithProvider,
MemoryBankDefWithProvider,
DatasetDefWithProvider,
ScoringFnDefWithProvider,
RoutableObjectWithProvider = Annotated[
Union[
Model,
Shield,
MemoryBank,
Dataset,
ScoringFn,
EvalTask,
],
Field(discriminator="type"),
]
RoutedProtocol = Union[
@ -51,6 +60,7 @@ RoutedProtocol = Union[
Memory,
DatasetIO,
Scoring,
Eval,
]
@ -134,6 +144,20 @@ One or more providers to use for each API. The same provider_type (e.g., meta-re
can be instantiated multiple times (with different configs) if necessary.
""",
)
metadata_store: Optional[KVStoreConfig] = Field(
default=None,
description="""
Configuration for the persistence store used by the distribution registry. If not specified,
a default SQLite store will be used.""",
)
# registry of "resources" in the distribution
models: List[ModelInput] = Field(default_factory=list)
shields: List[ShieldInput] = Field(default_factory=list)
memory_banks: List[MemoryBankInput] = Field(default_factory=list)
datasets: List[DatasetInput] = Field(default_factory=list)
scoring_fns: List[ScoringFnInput] = Field(default_factory=list)
eval_tasks: List[EvalTaskInput] = Field(default_factory=list)
class BuildConfig(BaseModel):

View file

@ -9,7 +9,7 @@ from typing import Dict, List
from pydantic import BaseModel
from llama_stack.providers.datatypes import Api, ProviderSpec, remote_provider_spec
from llama_stack.providers.datatypes import Api, ProviderSpec
def stack_apis() -> List[Api]:
@ -43,6 +43,10 @@ def builtin_automatically_routed_apis() -> List[AutoRoutedApiInfo]:
routing_table_api=Api.scoring_functions,
router_api=Api.scoring,
),
AutoRoutedApiInfo(
routing_table_api=Api.eval_tasks,
router_api=Api.eval,
),
]
@ -58,9 +62,6 @@ def get_provider_registry() -> Dict[Api, Dict[str, ProviderSpec]]:
for api in providable_apis():
name = api.name.lower()
module = importlib.import_module(f"llama_stack.providers.registry.{name}")
ret[api] = {
"remote": remote_provider_spec(api),
**{a.provider_type: a for a in module.available_providers()},
}
ret[api] = {a.provider_type: a for a in module.available_providers()}
return ret

View file

@ -8,6 +8,8 @@ import inspect
from typing import Any, Dict, List, Set
from termcolor import cprint
from llama_stack.providers.datatypes import * # noqa: F403
from llama_stack.distribution.datatypes import * # noqa: F403
@ -15,6 +17,7 @@ from llama_stack.apis.agents import Agents
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.eval import Eval
from llama_stack.apis.eval_tasks import EvalTasks
from llama_stack.apis.inference import Inference
from llama_stack.apis.inspect import Inspect
from llama_stack.apis.memory import Memory
@ -25,10 +28,16 @@ from llama_stack.apis.scoring import Scoring
from llama_stack.apis.scoring_functions import ScoringFunctions
from llama_stack.apis.shields import Shields
from llama_stack.apis.telemetry import Telemetry
from llama_stack.distribution.client import get_client_impl
from llama_stack.distribution.distribution import builtin_automatically_routed_apis
from llama_stack.distribution.store import DistributionRegistry
from llama_stack.distribution.utils.dynamic import instantiate_class_type
class InvalidProviderError(Exception):
pass
def api_protocol_map() -> Dict[Api, Any]:
return {
Api.agents: Agents,
@ -45,16 +54,22 @@ def api_protocol_map() -> Dict[Api, Any]:
Api.scoring: Scoring,
Api.scoring_functions: ScoringFunctions,
Api.eval: Eval,
Api.eval_tasks: EvalTasks,
}
def additional_protocols_map() -> Dict[Api, Any]:
return {
Api.inference: (ModelsProtocolPrivate, Models),
Api.memory: (MemoryBanksProtocolPrivate, MemoryBanks),
Api.safety: (ShieldsProtocolPrivate, Shields),
Api.datasetio: (DatasetsProtocolPrivate, Datasets),
Api.scoring: (ScoringFunctionsProtocolPrivate, ScoringFunctions),
Api.inference: (ModelsProtocolPrivate, Models, Api.models),
Api.memory: (MemoryBanksProtocolPrivate, MemoryBanks, Api.memory_banks),
Api.safety: (ShieldsProtocolPrivate, Shields, Api.shields),
Api.datasetio: (DatasetsProtocolPrivate, Datasets, Api.datasets),
Api.scoring: (
ScoringFunctionsProtocolPrivate,
ScoringFunctions,
Api.scoring_functions,
),
Api.eval: (EvalTasksProtocolPrivate, EvalTasks, Api.eval_tasks),
}
@ -63,9 +78,14 @@ class ProviderWithSpec(Provider):
spec: ProviderSpec
ProviderRegistry = Dict[Api, Dict[str, ProviderSpec]]
# TODO: this code is not very straightforward to follow and needs one more round of refactoring
async def resolve_impls(
run_config: StackRunConfig, provider_registry: Dict[Api, Dict[str, ProviderSpec]]
run_config: StackRunConfig,
provider_registry: ProviderRegistry,
dist_registry: DistributionRegistry,
) -> Dict[Api, Any]:
"""
Does two things:
@ -94,10 +114,20 @@ async def resolve_impls(
)
p = provider_registry[api][provider.provider_type]
if p.deprecation_error:
cprint(p.deprecation_error, "red", attrs=["bold"])
raise InvalidProviderError(p.deprecation_error)
elif p.deprecation_warning:
cprint(
f"Provider `{provider.provider_type}` for API `{api}` is deprecated and will be removed in a future release: {p.deprecation_warning}",
"yellow",
attrs=["bold"],
)
p.deps__ = [a.value for a in p.api_dependencies]
spec = ProviderWithSpec(
spec=p,
**(provider.dict()),
**(provider.model_dump()),
)
specs[provider.provider_id] = spec
@ -189,6 +219,7 @@ async def resolve_impls(
provider,
deps,
inner_impls,
dist_registry,
)
# TODO: ugh slightly redesign this shady looking code
if "inner-" in api_str:
@ -237,6 +268,7 @@ async def instantiate_provider(
provider: ProviderWithSpec,
deps: Dict[str, Any],
inner_impls: Dict[str, Any],
dist_registry: DistributionRegistry,
):
protocols = api_protocol_map()
additional_protocols = additional_protocols_map()
@ -249,17 +281,8 @@ async def instantiate_provider(
config_type = instantiate_class_type(provider_spec.config_class)
config = config_type(**provider.config)
if provider_spec.adapter:
method = "get_adapter_impl"
args = [config, deps]
else:
method = "get_client_impl"
protocol = protocols[provider_spec.api]
if provider_spec.api in additional_protocols:
_, additional_protocol = additional_protocols[provider_spec.api]
else:
additional_protocol = None
args = [protocol, additional_protocol, config, deps]
method = "get_adapter_impl"
args = [config, deps]
elif isinstance(provider_spec, AutoRoutedProviderSpec):
method = "get_auto_router_impl"
@ -270,7 +293,7 @@ async def instantiate_provider(
method = "get_routing_table_impl"
config = None
args = [provider_spec.api, inner_impls, deps]
args = [provider_spec.api, inner_impls, deps, dist_registry]
else:
method = "get_provider_impl"
@ -289,7 +312,7 @@ async def instantiate_provider(
not isinstance(provider_spec, AutoRoutedProviderSpec)
and provider_spec.api in additional_protocols
):
additional_api, _ = additional_protocols[provider_spec.api]
additional_api, _, _ = additional_protocols[provider_spec.api]
check_protocol_compliance(impl, additional_api)
return impl
@ -335,3 +358,29 @@ def check_protocol_compliance(obj: Any, protocol: Any) -> None:
raise ValueError(
f"Provider `{obj.__provider_id__} ({obj.__provider_spec__.api})` does not implement the following methods:\n{missing_methods}"
)
async def resolve_remote_stack_impls(
config: RemoteProviderConfig,
apis: List[str],
) -> Dict[Api, Any]:
protocols = api_protocol_map()
additional_protocols = additional_protocols_map()
impls = {}
for api_str in apis:
api = Api(api_str)
impls[api] = await get_client_impl(
protocols[api],
config,
{},
)
if api in additional_protocols:
_, additional_protocol, additional_api = additional_protocols[api]
impls[additional_api] = await get_client_impl(
additional_protocol,
config,
{},
)
return impls

View file

@ -7,8 +7,12 @@
from typing import Any
from llama_stack.distribution.datatypes import * # noqa: F403
from llama_stack.distribution.store import DistributionRegistry
from .routing_tables import (
DatasetsRoutingTable,
EvalTasksRoutingTable,
MemoryBanksRoutingTable,
ModelsRoutingTable,
ScoringFunctionsRoutingTable,
@ -20,6 +24,7 @@ async def get_routing_table_impl(
api: Api,
impls_by_provider_id: Dict[str, RoutedProtocol],
_deps,
dist_registry: DistributionRegistry,
) -> Any:
api_to_tables = {
"memory_banks": MemoryBanksRoutingTable,
@ -27,12 +32,13 @@ async def get_routing_table_impl(
"shields": ShieldsRoutingTable,
"datasets": DatasetsRoutingTable,
"scoring_functions": ScoringFunctionsRoutingTable,
"eval_tasks": EvalTasksRoutingTable,
}
if api.value not in api_to_tables:
raise ValueError(f"API {api.value} not found in router map")
impl = api_to_tables[api.value](impls_by_provider_id)
impl = api_to_tables[api.value](impls_by_provider_id, dist_registry)
await impl.initialize()
return impl
@ -40,6 +46,7 @@ async def get_routing_table_impl(
async def get_auto_router_impl(api: Api, routing_table: RoutingTable, _deps) -> Any:
from .routers import (
DatasetIORouter,
EvalRouter,
InferenceRouter,
MemoryRouter,
SafetyRouter,
@ -52,6 +59,7 @@ async def get_auto_router_impl(api: Api, routing_table: RoutingTable, _deps) ->
"safety": SafetyRouter,
"datasetio": DatasetIORouter,
"scoring": ScoringRouter,
"eval": EvalRouter,
}
if api.value not in api_to_routers:
raise ValueError(f"API {api.value} not found in router map")

View file

@ -4,16 +4,17 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, AsyncGenerator, Dict, List
from typing import Any, AsyncGenerator, Dict, List, Optional
from llama_stack.apis.datasetio.datasetio import DatasetIO
from llama_stack.apis.memory_banks.memory_banks import BankParams
from llama_stack.distribution.datatypes import RoutingTable
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.safety import * # noqa: F403
from llama_stack.apis.datasetio import * # noqa: F403
from llama_stack.apis.scoring import * # noqa: F403
from llama_stack.apis.eval import * # noqa: F403
class MemoryRouter(Memory):
@ -31,8 +32,19 @@ class MemoryRouter(Memory):
async def shutdown(self) -> None:
pass
async def register_memory_bank(self, memory_bank: MemoryBankDef) -> None:
await self.routing_table.register_memory_bank(memory_bank)
async def register_memory_bank(
self,
memory_bank_id: str,
params: BankParams,
provider_id: Optional[str] = None,
provider_memorybank_id: Optional[str] = None,
) -> None:
await self.routing_table.register_memory_bank(
memory_bank_id,
params,
provider_id,
provider_memorybank_id,
)
async def insert_documents(
self,
@ -70,12 +82,20 @@ class InferenceRouter(Inference):
async def shutdown(self) -> None:
pass
async def register_model(self, model: ModelDef) -> None:
await self.routing_table.register_model(model)
async def register_model(
self,
model_id: str,
provider_model_id: Optional[str] = None,
provider_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
) -> None:
await self.routing_table.register_model(
model_id, provider_model_id, provider_id, metadata
)
async def chat_completion(
self,
model: str,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
@ -86,7 +106,7 @@ class InferenceRouter(Inference):
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
params = dict(
model=model,
model_id=model_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
@ -96,7 +116,7 @@ class InferenceRouter(Inference):
stream=stream,
logprobs=logprobs,
)
provider = self.routing_table.get_provider_impl(model)
provider = self.routing_table.get_provider_impl(model_id)
if stream:
return (chunk async for chunk in await provider.chat_completion(**params))
else:
@ -104,16 +124,16 @@ class InferenceRouter(Inference):
async def completion(
self,
model: str,
model_id: str,
content: InterleavedTextMedia,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
provider = self.routing_table.get_provider_impl(model)
provider = self.routing_table.get_provider_impl(model_id)
params = dict(
model=model,
model_id=model_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
@ -127,11 +147,11 @@ class InferenceRouter(Inference):
async def embeddings(
self,
model: str,
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
return await self.routing_table.get_provider_impl(model).embeddings(
model=model,
return await self.routing_table.get_provider_impl(model_id).embeddings(
model_id=model_id,
contents=contents,
)
@ -149,17 +169,25 @@ class SafetyRouter(Safety):
async def shutdown(self) -> None:
pass
async def register_shield(self, shield: ShieldDef) -> None:
await self.routing_table.register_shield(shield)
async def register_shield(
self,
shield_id: str,
provider_shield_id: Optional[str] = None,
provider_id: Optional[str] = None,
params: Optional[Dict[str, Any]] = None,
) -> Shield:
return await self.routing_table.register_shield(
shield_id, provider_shield_id, provider_id, params
)
async def run_shield(
self,
shield_type: str,
shield_id: str,
messages: List[Message],
params: Dict[str, Any] = None,
) -> RunShieldResponse:
return await self.routing_table.get_provider_impl(shield_type).run_shield(
shield_type=shield_type,
return await self.routing_table.get_provider_impl(shield_id).run_shield(
shield_id=shield_id,
messages=messages,
params=params,
)
@ -211,16 +239,16 @@ class ScoringRouter(Scoring):
async def score_batch(
self,
dataset_id: str,
scoring_functions: List[str],
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
save_results_dataset: bool = False,
) -> ScoreBatchResponse:
res = {}
for fn_identifier in scoring_functions:
for fn_identifier in scoring_functions.keys():
score_response = await self.routing_table.get_provider_impl(
fn_identifier
).score_batch(
dataset_id=dataset_id,
scoring_functions=[fn_identifier],
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
)
res.update(score_response.results)
@ -232,17 +260,87 @@ class ScoringRouter(Scoring):
)
async def score(
self, input_rows: List[Dict[str, Any]], scoring_functions: List[str]
self,
input_rows: List[Dict[str, Any]],
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
) -> ScoreResponse:
res = {}
# look up and map each scoring function to its provider impl
for fn_identifier in scoring_functions:
for fn_identifier in scoring_functions.keys():
score_response = await self.routing_table.get_provider_impl(
fn_identifier
).score(
input_rows=input_rows,
scoring_functions=[fn_identifier],
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
)
res.update(score_response.results)
return ScoreResponse(results=res)
class EvalRouter(Eval):
def __init__(
self,
routing_table: RoutingTable,
) -> None:
self.routing_table = routing_table
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def run_eval(
self,
task_id: str,
task_config: AppEvalTaskConfig,
) -> Job:
return await self.routing_table.get_provider_impl(task_id).run_eval(
task_id=task_id,
task_config=task_config,
)
@webmethod(route="/eval/evaluate_rows", method="POST")
async def evaluate_rows(
self,
task_id: str,
input_rows: List[Dict[str, Any]],
scoring_functions: List[str],
task_config: EvalTaskConfig,
) -> EvaluateResponse:
return await self.routing_table.get_provider_impl(task_id).evaluate_rows(
task_id=task_id,
input_rows=input_rows,
scoring_functions=scoring_functions,
task_config=task_config,
)
async def job_status(
self,
task_id: str,
job_id: str,
) -> Optional[JobStatus]:
return await self.routing_table.get_provider_impl(task_id).job_status(
task_id, job_id
)
async def job_cancel(
self,
task_id: str,
job_id: str,
) -> None:
await self.routing_table.get_provider_impl(task_id).job_cancel(
task_id,
job_id,
)
async def job_result(
self,
task_id: str,
job_id: str,
) -> EvaluateResponse:
return await self.routing_table.get_provider_impl(task_id).job_result(
task_id,
job_id,
)

View file

@ -6,13 +6,21 @@
from typing import Any, Dict, List, Optional
from pydantic import parse_obj_as
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.models import * # noqa: F403
from llama_stack.apis.shields import * # noqa: F403
from llama_stack.apis.memory_banks import * # noqa: F403
from llama_stack.apis.datasets import * # noqa: F403
from llama_stack.apis.eval_tasks import * # noqa: F403
from llama_models.llama3.api.datatypes import URL
from llama_stack.apis.common.type_system import ParamType
from llama_stack.distribution.store import DistributionRegistry
from llama_stack.distribution.datatypes import * # noqa: F403
@ -20,88 +28,83 @@ def get_impl_api(p: Any) -> Api:
return p.__provider_spec__.api
async def register_object_with_provider(obj: RoutableObject, p: Any) -> None:
# TODO: this should return the registered object for all APIs
async def register_object_with_provider(obj: RoutableObject, p: Any) -> RoutableObject:
api = get_impl_api(p)
if obj.provider_id == "remote":
# if this is just a passthrough, we want to let the remote
# end actually do the registration with the correct provider
obj = obj.model_copy(deep=True)
obj.provider_id = ""
assert obj.provider_id != "remote", "Remote provider should not be registered"
if api == Api.inference:
await p.register_model(obj)
return await p.register_model(obj)
elif api == Api.safety:
await p.register_shield(obj)
return await p.register_shield(obj)
elif api == Api.memory:
await p.register_memory_bank(obj)
return await p.register_memory_bank(obj)
elif api == Api.datasetio:
await p.register_dataset(obj)
return await p.register_dataset(obj)
elif api == Api.scoring:
await p.register_scoring_function(obj)
return await p.register_scoring_function(obj)
elif api == Api.eval:
return await p.register_eval_task(obj)
else:
raise ValueError(f"Unknown API {api} for registering object with provider")
async def unregister_object_from_provider(obj: RoutableObject, p: Any) -> None:
api = get_impl_api(p)
if api == Api.memory:
return await p.unregister_memory_bank(obj.identifier)
elif api == Api.inference:
return await p.unregister_model(obj.identifier)
else:
raise ValueError(f"Unregister not supported for {api}")
Registry = Dict[str, List[RoutableObjectWithProvider]]
# TODO: this routing table maintains state in memory purely. We need to
# add persistence to it when we add dynamic registration of objects.
class CommonRoutingTableImpl(RoutingTable):
def __init__(
self,
impls_by_provider_id: Dict[str, RoutedProtocol],
dist_registry: DistributionRegistry,
) -> None:
self.impls_by_provider_id = impls_by_provider_id
self.dist_registry = dist_registry
async def initialize(self) -> None:
self.registry: Registry = {}
def add_objects(
async def add_objects(
objs: List[RoutableObjectWithProvider], provider_id: str, cls
) -> None:
for obj in objs:
if obj.identifier not in self.registry:
self.registry[obj.identifier] = []
if cls is None:
obj.provider_id = provider_id
else:
if provider_id == "remote":
# if this is just a passthrough, we got the *WithProvider object
# so we should just override the provider in-place
obj.provider_id = provider_id
else:
obj = cls(**obj.model_dump(), provider_id=provider_id)
self.registry[obj.identifier].append(obj)
# Create a copy of the model data and explicitly set provider_id
model_data = obj.model_dump()
model_data["provider_id"] = provider_id
obj = cls(**model_data)
await self.dist_registry.register(obj)
# Register all objects from providers
for pid, p in self.impls_by_provider_id.items():
api = get_impl_api(p)
if api == Api.inference:
p.model_store = self
models = await p.list_models()
add_objects(models, pid, ModelDefWithProvider)
elif api == Api.safety:
p.shield_store = self
shields = await p.list_shields()
add_objects(shields, pid, ShieldDefWithProvider)
elif api == Api.memory:
p.memory_bank_store = self
memory_banks = await p.list_memory_banks()
add_objects(memory_banks, pid, None)
elif api == Api.datasetio:
p.dataset_store = self
datasets = await p.list_datasets()
add_objects(datasets, pid, DatasetDefWithProvider)
elif api == Api.scoring:
p.scoring_function_store = self
scoring_functions = await p.list_scoring_functions()
add_objects(scoring_functions, pid, ScoringFnDefWithProvider)
await add_objects(scoring_functions, pid, ScoringFn)
elif api == Api.eval:
p.eval_task_store = self
async def shutdown(self) -> None:
for p in self.impls_by_provider_id.values():
@ -121,42 +124,60 @@ class CommonRoutingTableImpl(RoutingTable):
return ("DatasetIO", "dataset")
elif isinstance(self, ScoringFunctionsRoutingTable):
return ("Scoring", "scoring_function")
elif isinstance(self, EvalTasksRoutingTable):
return ("Eval", "eval_task")
else:
raise ValueError("Unknown routing table type")
if routing_key not in self.registry:
apiname, objname = apiname_object()
apiname, objtype = apiname_object()
# Get objects from disk registry
obj = self.dist_registry.get_cached(objtype, routing_key)
if not obj:
provider_ids = list(self.impls_by_provider_id.keys())
if len(provider_ids) > 1:
provider_ids_str = f"any of the providers: {', '.join(provider_ids)}"
else:
provider_ids_str = f"provider: `{provider_ids[0]}`"
raise ValueError(
f"`{routing_key}` not registered. Make sure there is an {apiname} provider serving this {objname}."
f"{objtype.capitalize()} `{routing_key}` not served by {provider_ids_str}. Make sure there is an {apiname} provider serving this {objtype}."
)
objs = self.registry[routing_key]
for obj in objs:
if not provider_id or provider_id == obj.provider_id:
return self.impls_by_provider_id[obj.provider_id]
if not provider_id or provider_id == obj.provider_id:
return self.impls_by_provider_id[obj.provider_id]
raise ValueError(f"Provider not found for `{routing_key}`")
def get_object_by_identifier(
self, identifier: str
async def get_object_by_identifier(
self, type: str, identifier: str
) -> Optional[RoutableObjectWithProvider]:
objs = self.registry.get(identifier, [])
if not objs:
# Get from disk registry
obj = await self.dist_registry.get(type, identifier)
if not obj:
return None
# kind of ill-defined behavior here, but we'll just return the first one
return objs[0]
return obj
async def register_object(self, obj: RoutableObjectWithProvider):
entries = self.registry.get(obj.identifier, [])
for entry in entries:
if entry.provider_id == obj.provider_id or not obj.provider_id:
print(
f"`{obj.identifier}` already registered with `{entry.provider_id}`"
)
return
async def unregister_object(self, obj: RoutableObjectWithProvider) -> None:
await self.dist_registry.delete(obj.type, obj.identifier)
await unregister_object_from_provider(
obj, self.impls_by_provider_id[obj.provider_id]
)
# if provider_id is not specified, we'll pick an arbitrary one from existing entries
async def register_object(
self, obj: RoutableObjectWithProvider
) -> RoutableObjectWithProvider:
# Get existing objects from registry
existing_obj = await self.dist_registry.get(obj.type, obj.identifier)
# Check for existing registration
if existing_obj and existing_obj.provider_id == obj.provider_id:
print(
f"`{obj.identifier}` already registered with `{existing_obj.provider_id}`"
)
return existing_obj
# if provider_id is not specified, pick an arbitrary one from existing entries
if not obj.provider_id and len(self.impls_by_provider_id) > 0:
obj.provider_id = list(self.impls_by_provider_id.keys())[0]
@ -165,90 +186,252 @@ class CommonRoutingTableImpl(RoutingTable):
p = self.impls_by_provider_id[obj.provider_id]
await register_object_with_provider(obj, p)
registered_obj = await register_object_with_provider(obj, p)
# TODO: This needs to be fixed for all APIs once they return the registered object
if obj.type == ResourceType.model.value:
await self.dist_registry.register(registered_obj)
return registered_obj
if obj.identifier not in self.registry:
self.registry[obj.identifier] = []
self.registry[obj.identifier].append(obj)
else:
await self.dist_registry.register(obj)
return obj
# TODO: persist this to a store
async def get_all_with_type(self, type: str) -> List[RoutableObjectWithProvider]:
objs = await self.dist_registry.get_all()
return [obj for obj in objs if obj.type == type]
class ModelsRoutingTable(CommonRoutingTableImpl, Models):
async def list_models(self) -> List[ModelDefWithProvider]:
objects = []
for objs in self.registry.values():
objects.extend(objs)
return objects
async def list_models(self) -> List[Model]:
return await self.get_all_with_type("model")
async def get_model(self, identifier: str) -> Optional[ModelDefWithProvider]:
return self.get_object_by_identifier(identifier)
async def get_model(self, identifier: str) -> Optional[Model]:
return await self.get_object_by_identifier("model", identifier)
async def register_model(self, model: ModelDefWithProvider) -> None:
await self.register_object(model)
async def register_model(
self,
model_id: str,
provider_model_id: Optional[str] = None,
provider_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
) -> Model:
if provider_model_id is None:
provider_model_id = model_id
if provider_id is None:
# If provider_id not specified, use the only provider if it supports this model
if len(self.impls_by_provider_id) == 1:
provider_id = list(self.impls_by_provider_id.keys())[0]
else:
raise ValueError(
"No provider specified and multiple providers available. Please specify a provider_id. Available providers: {self.impls_by_provider_id.keys()}"
)
if metadata is None:
metadata = {}
model = Model(
identifier=model_id,
provider_resource_id=provider_model_id,
provider_id=provider_id,
metadata=metadata,
)
registered_model = await self.register_object(model)
return registered_model
async def unregister_model(self, model_id: str) -> None:
existing_model = await self.get_model(model_id)
if existing_model is None:
raise ValueError(f"Model {model_id} not found")
await self.unregister_object(existing_model)
class ShieldsRoutingTable(CommonRoutingTableImpl, Shields):
async def list_shields(self) -> List[ShieldDef]:
objects = []
for objs in self.registry.values():
objects.extend(objs)
return objects
async def list_shields(self) -> List[Shield]:
return await self.get_all_with_type(ResourceType.shield.value)
async def get_shield(self, shield_type: str) -> Optional[ShieldDefWithProvider]:
return self.get_object_by_identifier(shield_type)
async def get_shield(self, identifier: str) -> Optional[Shield]:
return await self.get_object_by_identifier("shield", identifier)
async def register_shield(self, shield: ShieldDefWithProvider) -> None:
async def register_shield(
self,
shield_id: str,
provider_shield_id: Optional[str] = None,
provider_id: Optional[str] = None,
params: Optional[Dict[str, Any]] = None,
) -> Shield:
if provider_shield_id is None:
provider_shield_id = shield_id
if provider_id is None:
# If provider_id not specified, use the only provider if it supports this shield type
if len(self.impls_by_provider_id) == 1:
provider_id = list(self.impls_by_provider_id.keys())[0]
else:
raise ValueError(
"No provider specified and multiple providers available. Please specify a provider_id."
)
if params is None:
params = {}
shield = Shield(
identifier=shield_id,
provider_resource_id=provider_shield_id,
provider_id=provider_id,
params=params,
)
await self.register_object(shield)
return shield
class MemoryBanksRoutingTable(CommonRoutingTableImpl, MemoryBanks):
async def list_memory_banks(self) -> List[MemoryBankDefWithProvider]:
objects = []
for objs in self.registry.values():
objects.extend(objs)
return objects
async def list_memory_banks(self) -> List[MemoryBank]:
return await self.get_all_with_type(ResourceType.memory_bank.value)
async def get_memory_bank(
self, identifier: str
) -> Optional[MemoryBankDefWithProvider]:
return self.get_object_by_identifier(identifier)
async def get_memory_bank(self, memory_bank_id: str) -> Optional[MemoryBank]:
return await self.get_object_by_identifier("memory_bank", memory_bank_id)
async def register_memory_bank(
self, memory_bank: MemoryBankDefWithProvider
) -> None:
self,
memory_bank_id: str,
params: BankParams,
provider_id: Optional[str] = None,
provider_memory_bank_id: Optional[str] = None,
) -> MemoryBank:
if provider_memory_bank_id is None:
provider_memory_bank_id = memory_bank_id
if provider_id is None:
# If provider_id not specified, use the only provider if it supports this shield type
if len(self.impls_by_provider_id) == 1:
provider_id = list(self.impls_by_provider_id.keys())[0]
else:
raise ValueError(
"No provider specified and multiple providers available. Please specify a provider_id."
)
memory_bank = parse_obj_as(
MemoryBank,
{
"identifier": memory_bank_id,
"type": ResourceType.memory_bank.value,
"provider_id": provider_id,
"provider_resource_id": provider_memory_bank_id,
**params.model_dump(),
},
)
await self.register_object(memory_bank)
return memory_bank
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
existing_bank = await self.get_memory_bank(memory_bank_id)
if existing_bank is None:
raise ValueError(f"Memory bank {memory_bank_id} not found")
await self.unregister_object(existing_bank)
class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
async def list_datasets(self) -> List[DatasetDefWithProvider]:
objects = []
for objs in self.registry.values():
objects.extend(objs)
return objects
async def list_datasets(self) -> List[Dataset]:
return await self.get_all_with_type(ResourceType.dataset.value)
async def get_dataset(
self, dataset_identifier: str
) -> Optional[DatasetDefWithProvider]:
return self.get_object_by_identifier(dataset_identifier)
async def get_dataset(self, dataset_id: str) -> Optional[Dataset]:
return await self.get_object_by_identifier("dataset", dataset_id)
async def register_dataset(self, dataset_def: DatasetDefWithProvider) -> None:
await self.register_object(dataset_def)
async def register_dataset(
self,
dataset_id: str,
dataset_schema: Dict[str, ParamType],
url: URL,
provider_dataset_id: Optional[str] = None,
provider_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
) -> None:
if provider_dataset_id is None:
provider_dataset_id = dataset_id
if provider_id is None:
# If provider_id not specified, use the only provider if it supports this dataset
if len(self.impls_by_provider_id) == 1:
provider_id = list(self.impls_by_provider_id.keys())[0]
else:
raise ValueError(
"No provider specified and multiple providers available. Please specify a provider_id."
)
if metadata is None:
metadata = {}
dataset = Dataset(
identifier=dataset_id,
provider_resource_id=provider_dataset_id,
provider_id=provider_id,
dataset_schema=dataset_schema,
url=url,
metadata=metadata,
)
await self.register_object(dataset)
class ScoringFunctionsRoutingTable(CommonRoutingTableImpl, Scoring):
async def list_scoring_functions(self) -> List[ScoringFnDefWithProvider]:
objects = []
for objs in self.registry.values():
objects.extend(objs)
return objects
class ScoringFunctionsRoutingTable(CommonRoutingTableImpl, ScoringFunctions):
async def list_scoring_functions(self) -> List[ScoringFn]:
return await self.get_all_with_type(ResourceType.scoring_function.value)
async def get_scoring_function(
self, name: str
) -> Optional[ScoringFnDefWithProvider]:
return self.get_object_by_identifier(name)
async def get_scoring_function(self, scoring_fn_id: str) -> Optional[ScoringFn]:
return await self.get_object_by_identifier("scoring_function", scoring_fn_id)
async def register_scoring_function(
self, function_def: ScoringFnDefWithProvider
self,
scoring_fn_id: str,
description: str,
return_type: ParamType,
provider_scoring_fn_id: Optional[str] = None,
provider_id: Optional[str] = None,
params: Optional[ScoringFnParams] = None,
) -> None:
await self.register_object(function_def)
if provider_scoring_fn_id is None:
provider_scoring_fn_id = scoring_fn_id
if provider_id is None:
if len(self.impls_by_provider_id) == 1:
provider_id = list(self.impls_by_provider_id.keys())[0]
else:
raise ValueError(
"No provider specified and multiple providers available. Please specify a provider_id."
)
scoring_fn = ScoringFn(
identifier=scoring_fn_id,
description=description,
return_type=return_type,
provider_resource_id=provider_scoring_fn_id,
provider_id=provider_id,
params=params,
)
scoring_fn.provider_id = provider_id
await self.register_object(scoring_fn)
class EvalTasksRoutingTable(CommonRoutingTableImpl, EvalTasks):
async def list_eval_tasks(self) -> List[EvalTask]:
return await self.get_all_with_type(ResourceType.eval_task.value)
async def get_eval_task(self, name: str) -> Optional[EvalTask]:
return await self.get_object_by_identifier("eval_task", name)
async def register_eval_task(
self,
eval_task_id: str,
dataset_id: str,
scoring_functions: List[str],
metadata: Optional[Dict[str, Any]] = None,
provider_eval_task_id: Optional[str] = None,
provider_id: Optional[str] = None,
) -> None:
if metadata is None:
metadata = {}
if provider_id is None:
if len(self.impls_by_provider_id) == 1:
provider_id = list(self.impls_by_provider_id.keys())[0]
else:
raise ValueError(
"No provider specified and multiple providers available. Please specify a provider_id."
)
if provider_eval_task_id is None:
provider_eval_task_id = eval_task_id
eval_task = EvalTask(
identifier=eval_task_id,
dataset_id=dataset_id,
scoring_functions=scoring_functions,
metadata=metadata,
provider_id=provider_id,
provider_resource_id=provider_eval_task_id,
)
await self.register_object(eval_task)

View file

@ -8,8 +8,12 @@ import asyncio
import functools
import inspect
import json
import os
import re
import signal
import sys
import traceback
import warnings
from contextlib import asynccontextmanager
from ssl import SSLError
@ -26,10 +30,7 @@ from pydantic import BaseModel, ValidationError
from termcolor import cprint
from typing_extensions import Annotated
from llama_stack.distribution.distribution import (
builtin_automatically_routed_apis,
get_provider_registry,
)
from llama_stack.distribution.distribution import builtin_automatically_routed_apis
from llama_stack.providers.utils.telemetry.tracing import (
end_trace,
@ -38,16 +39,26 @@ from llama_stack.providers.utils.telemetry.tracing import (
start_trace,
)
from llama_stack.distribution.datatypes import * # noqa: F403
from llama_stack.distribution.request_headers import set_request_provider_data
from llama_stack.distribution.resolver import resolve_impls
from llama_stack.distribution.resolver import InvalidProviderError
from llama_stack.distribution.stack import construct_stack
from .endpoints import get_all_api_endpoints
def warn_with_traceback(message, category, filename, lineno, file=None, line=None):
log = file if hasattr(file, "write") else sys.stderr
traceback.print_stack(file=log)
log.write(warnings.formatwarning(message, category, filename, lineno, line))
if os.environ.get("LLAMA_STACK_TRACE_WARNINGS"):
warnings.showwarning = warn_with_traceback
def create_sse_event(data: Any) -> str:
if isinstance(data, BaseModel):
data = data.json()
data = data.model_dump_json()
else:
data = json.dumps(data)
@ -184,15 +195,6 @@ async def lifespan(app: FastAPI):
await impl.shutdown()
def create_dynamic_passthrough(
downstream_url: str, downstream_headers: Optional[Dict[str, str]] = None
):
async def endpoint(request: Request):
return await passthrough(request, downstream_url, downstream_headers)
return endpoint
def is_streaming_request(func_name: str, request: Request, **kwargs):
# TODO: pass the api method and punt it to the Protocol definition directly
return kwargs.get("stream", False)
@ -206,7 +208,8 @@ async def maybe_await(value):
async def sse_generator(event_gen):
try:
async for item in await event_gen:
event_gen = await event_gen
async for item in event_gen:
yield create_sse_event(item)
await asyncio.sleep(0.01)
except asyncio.CancelledError:
@ -226,7 +229,6 @@ async def sse_generator(event_gen):
def create_dynamic_typed_route(func: Any, method: str):
async def endpoint(request: Request, **kwargs):
await start_trace(func.__name__)
@ -269,17 +271,74 @@ def create_dynamic_typed_route(func: Any, method: str):
return endpoint
class EnvVarError(Exception):
def __init__(self, var_name: str, path: str = ""):
self.var_name = var_name
self.path = path
super().__init__(
f"Environment variable '{var_name}' not set or empty{f' at {path}' if path else ''}"
)
def replace_env_vars(config: Any, path: str = "") -> Any:
if isinstance(config, dict):
result = {}
for k, v in config.items():
try:
result[k] = replace_env_vars(v, f"{path}.{k}" if path else k)
except EnvVarError as e:
raise EnvVarError(e.var_name, e.path) from None
return result
elif isinstance(config, list):
result = []
for i, v in enumerate(config):
try:
result.append(replace_env_vars(v, f"{path}[{i}]"))
except EnvVarError as e:
raise EnvVarError(e.var_name, e.path) from None
return result
elif isinstance(config, str):
pattern = r"\${env\.([A-Z0-9_]+)(?::([^}]*))?}"
def get_env_var(match):
env_var = match.group(1)
default_val = match.group(2)
value = os.environ.get(env_var)
if not value:
if default_val is None:
raise EnvVarError(env_var, path)
else:
value = default_val
return value
try:
return re.sub(pattern, get_env_var, config)
except EnvVarError as e:
raise EnvVarError(e.var_name, e.path) from None
return config
def main(
yaml_config: str = "llamastack-run.yaml",
port: int = 5000,
disable_ipv6: bool = False,
):
with open(yaml_config, "r") as fp:
config = StackRunConfig(**yaml.safe_load(fp))
config = replace_env_vars(yaml.safe_load(fp))
config = StackRunConfig(**config)
app = FastAPI()
impls = asyncio.run(resolve_impls(config, get_provider_registry()))
try:
impls = asyncio.run(construct_stack(config))
except InvalidProviderError:
sys.exit(1)
if Api.telemetry in impls:
setup_logger(impls[Api.telemetry])
@ -303,28 +362,19 @@ def main(
endpoints = all_endpoints[api]
impl = impls[api]
if is_passthrough(impl.__provider_spec__):
for endpoint in endpoints:
url = impl.__provider_config__.url.rstrip("/") + endpoint.route
getattr(app, endpoint.method)(endpoint.route)(
create_dynamic_passthrough(url)
)
else:
for endpoint in endpoints:
if not hasattr(impl, endpoint.name):
# ideally this should be a typing violation already
raise ValueError(
f"Could not find method {endpoint.name} on {impl}!!"
)
for endpoint in endpoints:
if not hasattr(impl, endpoint.name):
# ideally this should be a typing violation already
raise ValueError(f"Could not find method {endpoint.name} on {impl}!!")
impl_method = getattr(impl, endpoint.name)
impl_method = getattr(impl, endpoint.name)
getattr(app, endpoint.method)(endpoint.route, response_model=None)(
create_dynamic_typed_route(
impl_method,
endpoint.method,
)
getattr(app, endpoint.method)(endpoint.route, response_model=None)(
create_dynamic_typed_route(
impl_method,
endpoint.method,
)
)
cprint(f"Serving API {api_str}", "white", attrs=["bold"])
for endpoint in endpoints:

View file

@ -0,0 +1,107 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from termcolor import colored
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.agents import * # noqa: F403
from llama_stack.apis.datasets import * # noqa: F403
from llama_stack.apis.datasetio import * # noqa: F403
from llama_stack.apis.scoring import * # noqa: F403
from llama_stack.apis.scoring_functions import * # noqa: F403
from llama_stack.apis.eval import * # noqa: F403
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.batch_inference import * # noqa: F403
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.apis.telemetry import * # noqa: F403
from llama_stack.apis.post_training import * # noqa: F403
from llama_stack.apis.synthetic_data_generation import * # noqa: F403
from llama_stack.apis.safety import * # noqa: F403
from llama_stack.apis.models import * # noqa: F403
from llama_stack.apis.memory_banks import * # noqa: F403
from llama_stack.apis.shields import * # noqa: F403
from llama_stack.apis.inspect import * # noqa: F403
from llama_stack.apis.eval_tasks import * # noqa: F403
from llama_stack.distribution.datatypes import StackRunConfig
from llama_stack.distribution.distribution import get_provider_registry
from llama_stack.distribution.resolver import ProviderRegistry, resolve_impls
from llama_stack.distribution.store.registry import create_dist_registry
from llama_stack.providers.datatypes import Api
class LlamaStack(
MemoryBanks,
Inference,
BatchInference,
Agents,
Safety,
SyntheticDataGeneration,
Datasets,
Telemetry,
PostTraining,
Memory,
Eval,
EvalTasks,
Scoring,
ScoringFunctions,
DatasetIO,
Models,
Shields,
Inspect,
):
pass
RESOURCES = [
("models", Api.models, "register_model", "list_models"),
("shields", Api.shields, "register_shield", "list_shields"),
("memory_banks", Api.memory_banks, "register_memory_bank", "list_memory_banks"),
("datasets", Api.datasets, "register_dataset", "list_datasets"),
(
"scoring_fns",
Api.scoring_functions,
"register_scoring_function",
"list_scoring_functions",
),
("eval_tasks", Api.eval_tasks, "register_eval_task", "list_eval_tasks"),
]
async def register_resources(run_config: StackRunConfig, impls: Dict[Api, Any]):
for rsrc, api, register_method, list_method in RESOURCES:
objects = getattr(run_config, rsrc)
if api not in impls:
continue
method = getattr(impls[api], register_method)
for obj in objects:
await method(**obj.model_dump())
method = getattr(impls[api], list_method)
for obj in await method():
print(
f"{rsrc.capitalize()}: {colored(obj.identifier, 'white', attrs=['bold'])} served by {colored(obj.provider_id, 'white', attrs=['bold'])}",
)
print("")
# Produces a stack of providers for the given run config. Not all APIs may be
# asked for in the run config.
async def construct_stack(
run_config: StackRunConfig, provider_registry: Optional[ProviderRegistry] = None
) -> Dict[Api, Any]:
dist_registry, _ = await create_dist_registry(
run_config.metadata_store, run_config.image_name
)
impls = await resolve_impls(
run_config, provider_registry or get_provider_registry(), dist_registry
)
await register_resources(run_config, impls)
return impls

View file

@ -10,6 +10,8 @@ DOCKER_BINARY=${DOCKER_BINARY:-docker}
DOCKER_OPTS=${DOCKER_OPTS:-}
LLAMA_CHECKPOINT_DIR=${LLAMA_CHECKPOINT_DIR:-}
LLAMA_STACK_DIR=${LLAMA_STACK_DIR:-}
TEST_PYPI_VERSION=${TEST_PYPI_VERSION:-}
PYPI_VERSION=${PYPI_VERSION:-}
set -euo pipefail
@ -54,11 +56,18 @@ if [ -n "$LLAMA_CHECKPOINT_DIR" ]; then
DOCKER_OPTS="$DOCKER_OPTS --gpus=all"
fi
version_tag="latest"
if [ -n "$PYPI_VERSION" ]; then
version_tag="$PYPI_VERSION"
elif [ -n "$TEST_PYPI_VERSION" ]; then
version_tag="test-$TEST_PYPI_VERSION"
fi
$DOCKER_BINARY run $DOCKER_OPTS -it \
-p $port:$port \
-v "$yaml_config:/app/config.yaml" \
$mounts \
$docker_image \
$docker_image:$version_tag \
python -m llama_stack.distribution.server.server \
--yaml_config /app/config.yaml \
--port $port "$@"

View file

@ -0,0 +1,7 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .registry import * # noqa: F401 F403

View file

@ -0,0 +1,221 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import json
from contextlib import asynccontextmanager
from typing import Dict, List, Optional, Protocol, Tuple
import pydantic
from llama_stack.distribution.datatypes import KVStoreConfig, RoutableObjectWithProvider
from llama_stack.distribution.utils.config_dirs import DISTRIBS_BASE_DIR
from llama_stack.providers.utils.kvstore import (
KVStore,
kvstore_impl,
SqliteKVStoreConfig,
)
class DistributionRegistry(Protocol):
async def get_all(self) -> List[RoutableObjectWithProvider]: ...
async def initialize(self) -> None: ...
async def get(self, identifier: str) -> Optional[RoutableObjectWithProvider]: ...
def get_cached(self, identifier: str) -> Optional[RoutableObjectWithProvider]: ...
async def update(
self, obj: RoutableObjectWithProvider
) -> RoutableObjectWithProvider: ...
async def register(self, obj: RoutableObjectWithProvider) -> bool: ...
async def delete(self, type: str, identifier: str) -> None: ...
REGISTER_PREFIX = "distributions:registry"
KEY_VERSION = "v2"
KEY_FORMAT = f"{REGISTER_PREFIX}:{KEY_VERSION}::" + "{type}:{identifier}"
def _get_registry_key_range() -> Tuple[str, str]:
"""Returns the start and end keys for the registry range query."""
start_key = f"{REGISTER_PREFIX}:{KEY_VERSION}"
return start_key, f"{start_key}\xff"
def _parse_registry_values(values: List[str]) -> List[RoutableObjectWithProvider]:
"""Utility function to parse registry values into RoutableObjectWithProvider objects."""
all_objects = []
for value in values:
obj = pydantic.parse_obj_as(
RoutableObjectWithProvider,
json.loads(value),
)
all_objects.append(obj)
return all_objects
class DiskDistributionRegistry(DistributionRegistry):
def __init__(self, kvstore: KVStore):
self.kvstore = kvstore
async def initialize(self) -> None:
pass
def get_cached(
self, type: str, identifier: str
) -> Optional[RoutableObjectWithProvider]:
# Disk registry does not have a cache
raise NotImplementedError("Disk registry does not have a cache")
async def get_all(self) -> List[RoutableObjectWithProvider]:
start_key, end_key = _get_registry_key_range()
values = await self.kvstore.range(start_key, end_key)
return _parse_registry_values(values)
async def get(
self, type: str, identifier: str
) -> Optional[RoutableObjectWithProvider]:
json_str = await self.kvstore.get(
KEY_FORMAT.format(type=type, identifier=identifier)
)
if not json_str:
return None
objects_data = json.loads(json_str)
# Return only the first object if any exist
if objects_data:
return pydantic.parse_obj_as(
RoutableObjectWithProvider,
json.loads(objects_data),
)
return None
async def update(self, obj: RoutableObjectWithProvider) -> None:
await self.kvstore.set(
KEY_FORMAT.format(type=obj.type, identifier=obj.identifier),
obj.model_dump_json(),
)
return obj
async def register(self, obj: RoutableObjectWithProvider) -> bool:
existing_obj = await self.get(obj.type, obj.identifier)
# dont register if the object's providerid already exists
if existing_obj and existing_obj.provider_id == obj.provider_id:
return False
await self.kvstore.set(
KEY_FORMAT.format(type=obj.type, identifier=obj.identifier),
obj.model_dump_json(),
)
return True
async def delete(self, type: str, identifier: str) -> None:
await self.kvstore.delete(KEY_FORMAT.format(type=type, identifier=identifier))
class CachedDiskDistributionRegistry(DiskDistributionRegistry):
def __init__(self, kvstore: KVStore):
super().__init__(kvstore)
self.cache: Dict[Tuple[str, str], RoutableObjectWithProvider] = {}
self._initialized = False
self._initialize_lock = asyncio.Lock()
self._cache_lock = asyncio.Lock()
@asynccontextmanager
async def _locked_cache(self):
"""Context manager for safely accessing the cache with a lock."""
async with self._cache_lock:
yield self.cache
async def _ensure_initialized(self):
"""Ensures the registry is initialized before operations."""
if self._initialized:
return
async with self._initialize_lock:
if self._initialized:
return
start_key, end_key = _get_registry_key_range()
values = await self.kvstore.range(start_key, end_key)
objects = _parse_registry_values(values)
async with self._locked_cache() as cache:
for obj in objects:
cache_key = (obj.type, obj.identifier)
cache[cache_key] = obj
self._initialized = True
async def initialize(self) -> None:
await self._ensure_initialized()
def get_cached(
self, type: str, identifier: str
) -> Optional[RoutableObjectWithProvider]:
return self.cache.get((type, identifier), None)
async def get_all(self) -> List[RoutableObjectWithProvider]:
await self._ensure_initialized()
async with self._locked_cache() as cache:
return list(cache.values())
async def get(
self, type: str, identifier: str
) -> Optional[RoutableObjectWithProvider]:
await self._ensure_initialized()
cache_key = (type, identifier)
async with self._locked_cache() as cache:
return cache.get(cache_key, None)
async def register(self, obj: RoutableObjectWithProvider) -> bool:
await self._ensure_initialized()
success = await super().register(obj)
if success:
cache_key = (obj.type, obj.identifier)
async with self._locked_cache() as cache:
cache[cache_key] = obj
return success
async def update(self, obj: RoutableObjectWithProvider) -> None:
await super().update(obj)
cache_key = (obj.type, obj.identifier)
async with self._locked_cache() as cache:
cache[cache_key] = obj
return obj
async def delete(self, type: str, identifier: str) -> None:
await super().delete(type, identifier)
cache_key = (type, identifier)
async with self._locked_cache() as cache:
if cache_key in cache:
del cache[cache_key]
async def create_dist_registry(
metadata_store: Optional[KVStoreConfig],
image_name: str,
) -> tuple[CachedDiskDistributionRegistry, KVStore]:
# instantiate kvstore for storing and retrieving distribution metadata
if metadata_store:
dist_kvstore = await kvstore_impl(metadata_store)
else:
dist_kvstore = await kvstore_impl(
SqliteKVStoreConfig(
db_path=(DISTRIBS_BASE_DIR / image_name / "kvstore.db").as_posix()
)
)
dist_registry = CachedDiskDistributionRegistry(dist_kvstore)
await dist_registry.initialize()
return dist_registry, dist_kvstore

View file

@ -0,0 +1,215 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import pytest
import pytest_asyncio
from llama_stack.distribution.store import * # noqa F403
from llama_stack.apis.inference import Model
from llama_stack.apis.memory_banks import VectorMemoryBank
from llama_stack.providers.utils.kvstore import kvstore_impl, SqliteKVStoreConfig
from llama_stack.distribution.datatypes import * # noqa F403
@pytest.fixture
def config():
config = SqliteKVStoreConfig(db_path="/tmp/test_registry.db")
if os.path.exists(config.db_path):
os.remove(config.db_path)
return config
@pytest_asyncio.fixture
async def registry(config):
registry = DiskDistributionRegistry(await kvstore_impl(config))
await registry.initialize()
return registry
@pytest_asyncio.fixture
async def cached_registry(config):
registry = CachedDiskDistributionRegistry(await kvstore_impl(config))
await registry.initialize()
return registry
@pytest.fixture
def sample_bank():
return VectorMemoryBank(
identifier="test_bank",
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
provider_resource_id="test_bank",
provider_id="test-provider",
)
@pytest.fixture
def sample_model():
return Model(
identifier="test_model",
provider_resource_id="test_model",
provider_id="test-provider",
)
@pytest.mark.asyncio
async def test_registry_initialization(registry):
# Test empty registry
results = await registry.get("nonexistent", "nonexistent")
assert len(results) == 0
@pytest.mark.asyncio
async def test_basic_registration(registry, sample_bank, sample_model):
print(f"Registering {sample_bank}")
await registry.register(sample_bank)
print(f"Registering {sample_model}")
await registry.register(sample_model)
print("Getting bank")
results = await registry.get("memory_bank", "test_bank")
assert len(results) == 1
result_bank = results[0]
assert result_bank.identifier == sample_bank.identifier
assert result_bank.embedding_model == sample_bank.embedding_model
assert result_bank.chunk_size_in_tokens == sample_bank.chunk_size_in_tokens
assert result_bank.overlap_size_in_tokens == sample_bank.overlap_size_in_tokens
assert result_bank.provider_id == sample_bank.provider_id
results = await registry.get("model", "test_model")
assert len(results) == 1
result_model = results[0]
assert result_model.identifier == sample_model.identifier
assert result_model.provider_id == sample_model.provider_id
@pytest.mark.asyncio
async def test_cached_registry_initialization(config, sample_bank, sample_model):
# First populate the disk registry
disk_registry = DiskDistributionRegistry(await kvstore_impl(config))
await disk_registry.initialize()
await disk_registry.register(sample_bank)
await disk_registry.register(sample_model)
# Test cached version loads from disk
cached_registry = CachedDiskDistributionRegistry(await kvstore_impl(config))
await cached_registry.initialize()
results = await cached_registry.get("memory_bank", "test_bank")
assert len(results) == 1
result_bank = results[0]
assert result_bank.identifier == sample_bank.identifier
assert result_bank.embedding_model == sample_bank.embedding_model
assert result_bank.chunk_size_in_tokens == sample_bank.chunk_size_in_tokens
assert result_bank.overlap_size_in_tokens == sample_bank.overlap_size_in_tokens
assert result_bank.provider_id == sample_bank.provider_id
@pytest.mark.asyncio
async def test_cached_registry_updates(config):
cached_registry = CachedDiskDistributionRegistry(await kvstore_impl(config))
await cached_registry.initialize()
new_bank = VectorMemoryBank(
identifier="test_bank_2",
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=256,
overlap_size_in_tokens=32,
provider_resource_id="test_bank_2",
provider_id="baz",
)
await cached_registry.register(new_bank)
# Verify in cache
results = await cached_registry.get("memory_bank", "test_bank_2")
assert len(results) == 1
result_bank = results[0]
assert result_bank.identifier == new_bank.identifier
assert result_bank.provider_id == new_bank.provider_id
# Verify persisted to disk
new_registry = DiskDistributionRegistry(await kvstore_impl(config))
await new_registry.initialize()
results = await new_registry.get("memory_bank", "test_bank_2")
assert len(results) == 1
result_bank = results[0]
assert result_bank.identifier == new_bank.identifier
assert result_bank.provider_id == new_bank.provider_id
@pytest.mark.asyncio
async def test_duplicate_provider_registration(config):
cached_registry = CachedDiskDistributionRegistry(await kvstore_impl(config))
await cached_registry.initialize()
original_bank = VectorMemoryBank(
identifier="test_bank_2",
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=256,
overlap_size_in_tokens=32,
provider_resource_id="test_bank_2",
provider_id="baz",
)
await cached_registry.register(original_bank)
duplicate_bank = VectorMemoryBank(
identifier="test_bank_2",
embedding_model="different-model",
chunk_size_in_tokens=128,
overlap_size_in_tokens=16,
provider_resource_id="test_bank_2",
provider_id="baz", # Same provider_id
)
await cached_registry.register(duplicate_bank)
results = await cached_registry.get("memory_bank", "test_bank_2")
assert len(results) == 1 # Still only one result
assert (
results[0].embedding_model == original_bank.embedding_model
) # Original values preserved
@pytest.mark.asyncio
async def test_get_all_objects(config):
cached_registry = CachedDiskDistributionRegistry(await kvstore_impl(config))
await cached_registry.initialize()
# Create multiple test banks
test_banks = [
VectorMemoryBank(
identifier=f"test_bank_{i}",
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=256,
overlap_size_in_tokens=32,
provider_resource_id=f"test_bank_{i}",
provider_id=f"provider_{i}",
)
for i in range(3)
]
# Register all banks
for bank in test_banks:
await cached_registry.register(bank)
# Test get_all retrieval
all_results = await cached_registry.get_all()
assert len(all_results) == 3
# Verify each bank was stored correctly
for original_bank in test_banks:
matching_banks = [
b for b in all_results if b.identifier == original_bank.identifier
]
assert len(matching_banks) == 1
stored_bank = matching_banks[0]
assert stored_bank.embedding_model == original_bank.embedding_model
assert stored_bank.provider_id == original_bank.provider_id
assert stored_bank.chunk_size_in_tokens == original_bank.chunk_size_in_tokens
assert (
stored_bank.overlap_size_in_tokens == original_bank.overlap_size_in_tokens
)

View file

@ -10,4 +10,5 @@ from .config_dirs import DEFAULT_CHECKPOINT_DIR
def model_local_dir(descriptor: str) -> str:
return os.path.join(DEFAULT_CHECKPOINT_DIR, descriptor)
path = os.path.join(DEFAULT_CHECKPOINT_DIR, descriptor)
return path.replace(":", "-")

View file

@ -1,187 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator
from fireworks.client import Fireworks
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
)
from .config import FireworksImplConfig
FIREWORKS_SUPPORTED_MODELS = {
"Llama3.1-8B-Instruct": "fireworks/llama-v3p1-8b-instruct",
"Llama3.1-70B-Instruct": "fireworks/llama-v3p1-70b-instruct",
"Llama3.1-405B-Instruct": "fireworks/llama-v3p1-405b-instruct",
"Llama3.2-1B-Instruct": "fireworks/llama-v3p2-1b-instruct",
"Llama3.2-3B-Instruct": "fireworks/llama-v3p2-3b-instruct",
"Llama3.2-11B-Vision-Instruct": "llama-v3p2-11b-vision-instruct",
"Llama3.2-90B-Vision-Instruct": "llama-v3p2-90b-vision-instruct",
}
class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
def __init__(self, config: FireworksImplConfig) -> None:
ModelRegistryHelper.__init__(
self, stack_to_provider_models_map=FIREWORKS_SUPPORTED_MODELS
)
self.config = config
self.formatter = ChatFormat(Tokenizer.get_instance())
async def initialize(self) -> None:
return
async def shutdown(self) -> None:
pass
async def completion(
self,
model: str,
content: InterleavedTextMedia,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
request = CompletionRequest(
model=model,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
client = Fireworks(api_key=self.config.api_key)
if stream:
return self._stream_completion(request, client)
else:
return await self._nonstream_completion(request, client)
async def _nonstream_completion(
self, request: CompletionRequest, client: Fireworks
) -> CompletionResponse:
params = self._get_params(request)
r = await client.completion.acreate(**params)
return process_completion_response(r, self.formatter)
async def _stream_completion(
self, request: CompletionRequest, client: Fireworks
) -> AsyncGenerator:
params = self._get_params(request)
stream = client.completion.acreate(**params)
async for chunk in process_completion_stream_response(stream, self.formatter):
yield chunk
async def chat_completion(
self,
model: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
request = ChatCompletionRequest(
model=model,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
client = Fireworks(api_key=self.config.api_key)
if stream:
return self._stream_chat_completion(request, client)
else:
return await self._nonstream_chat_completion(request, client)
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest, client: Fireworks
) -> ChatCompletionResponse:
params = self._get_params(request)
r = await client.completion.acreate(**params)
return process_chat_completion_response(r, self.formatter)
async def _stream_chat_completion(
self, request: ChatCompletionRequest, client: Fireworks
) -> AsyncGenerator:
params = self._get_params(request)
stream = client.completion.acreate(**params)
async for chunk in process_chat_completion_stream_response(
stream, self.formatter
):
yield chunk
def _get_params(self, request) -> dict:
prompt = ""
if type(request) == ChatCompletionRequest:
prompt = chat_completion_request_to_prompt(request, self.formatter)
elif type(request) == CompletionRequest:
prompt = completion_request_to_prompt(request, self.formatter)
else:
raise ValueError(f"Unknown request type {type(request)}")
# Fireworks always prepends with BOS
if prompt.startswith("<|begin_of_text|>"):
prompt = prompt[len("<|begin_of_text|>") :]
options = get_sampling_options(request.sampling_params)
options.setdefault("max_tokens", 512)
if fmt := request.response_format:
if fmt.type == ResponseFormatType.json_schema.value:
options["response_format"] = {
"type": "json_object",
"schema": fmt.json_schema,
}
elif fmt.type == ResponseFormatType.grammar.value:
options["response_format"] = {
"type": "grammar",
"grammar": fmt.bnf,
}
else:
raise ValueError(f"Unknown response format {fmt.type}")
return {
"model": self.map_to_provider_model(request.model),
"prompt": prompt,
"stream": request.stream,
**options,
}
async def embeddings(
self,
model: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()

View file

@ -1,16 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel, Field
class BedrockSafetyConfig(BaseModel):
"""Configuration information for a guardrail that you want to use in the request."""
aws_profile: str = Field(
default="default",
description="The profile on the machine having valid aws credentials. This will ensure separation of creation to invocation",
)

View file

@ -1,26 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Optional
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
class TogetherProviderDataValidator(BaseModel):
together_api_key: str
@json_schema_type
class TogetherSafetyConfig(BaseModel):
url: str = Field(
default="https://api.together.xyz/v1",
description="The URL for the Together AI server",
)
api_key: Optional[str] = Field(
default=None,
description="The Together AI API Key (default for the distribution, if any)",
)

View file

@ -1,101 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from together import Together
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.safety import * # noqa: F403
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.providers.datatypes import ShieldsProtocolPrivate
from .config import TogetherSafetyConfig
TOGETHER_SHIELD_MODEL_MAP = {
"llama_guard": "meta-llama/Meta-Llama-Guard-3-8B",
"Llama-Guard-3-8B": "meta-llama/Meta-Llama-Guard-3-8B",
"Llama-Guard-3-11B-Vision": "meta-llama/Llama-Guard-3-11B-Vision-Turbo",
}
class TogetherSafetyImpl(Safety, NeedsRequestProviderData, ShieldsProtocolPrivate):
def __init__(self, config: TogetherSafetyConfig) -> None:
self.config = config
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def register_shield(self, shield: ShieldDef) -> None:
raise ValueError("Registering dynamic shields is not supported")
async def list_shields(self) -> List[ShieldDef]:
return [
ShieldDef(
identifier=ShieldType.llama_guard.value,
type=ShieldType.llama_guard.value,
params={},
)
]
async def run_shield(
self, shield_type: str, messages: List[Message], params: Dict[str, Any] = None
) -> RunShieldResponse:
shield_def = await self.shield_store.get_shield(shield_type)
if not shield_def:
raise ValueError(f"Unknown shield {shield_type}")
model = shield_def.params.get("model", "llama_guard")
if model not in TOGETHER_SHIELD_MODEL_MAP:
raise ValueError(f"Unsupported safety model: {model}")
together_api_key = None
if self.config.api_key is not None:
together_api_key = self.config.api_key
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.together_api_key:
raise ValueError(
'Pass Together API Key in the header X-LlamaStack-ProviderData as { "together_api_key": <your api key>}'
)
together_api_key = provider_data.together_api_key
# messages can have role assistant or user
api_messages = []
for message in messages:
if message.role in (Role.user.value, Role.assistant.value):
api_messages.append({"role": message.role, "content": message.content})
violation = await get_safety_response(
together_api_key, TOGETHER_SHIELD_MODEL_MAP[model], api_messages
)
return RunShieldResponse(violation=violation)
async def get_safety_response(
api_key: str, model_name: str, messages: List[Dict[str, str]]
) -> Optional[SafetyViolation]:
client = Together(api_key=api_key)
response = client.chat.completions.create(messages=messages, model=model_name)
if len(response.choices) == 0:
return None
response_text = response.choices[0].message.content
if response_text == "safe":
return None
parts = response_text.split("\n")
if len(parts) != 2:
return None
if parts[0] == "unsafe":
return SafetyViolation(
violation_level=ViolationLevel.ERROR,
metadata={"violation_type": parts[1]},
)
return None

View file

@ -6,15 +6,17 @@
from enum import Enum
from typing import Any, List, Optional, Protocol
from urllib.parse import urlparse
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
from llama_stack.apis.datasets import DatasetDef
from llama_stack.apis.memory_banks import MemoryBankDef
from llama_stack.apis.models import ModelDef
from llama_stack.apis.scoring_functions import ScoringFnDef
from llama_stack.apis.shields import ShieldDef
from llama_stack.apis.datasets import Dataset
from llama_stack.apis.eval_tasks import EvalTask
from llama_stack.apis.memory_banks.memory_banks import MemoryBank
from llama_stack.apis.models import Model
from llama_stack.apis.scoring_functions import ScoringFn
from llama_stack.apis.shields import Shield
@json_schema_type
@ -34,39 +36,42 @@ class Api(Enum):
memory_banks = "memory_banks"
datasets = "datasets"
scoring_functions = "scoring_functions"
eval_tasks = "eval_tasks"
# built-in API
inspect = "inspect"
class ModelsProtocolPrivate(Protocol):
async def list_models(self) -> List[ModelDef]: ...
async def register_model(self, model: Model) -> None: ...
async def register_model(self, model: ModelDef) -> None: ...
async def unregister_model(self, model_id: str) -> None: ...
class ShieldsProtocolPrivate(Protocol):
async def list_shields(self) -> List[ShieldDef]: ...
async def register_shield(self, shield: ShieldDef) -> None: ...
async def register_shield(self, shield: Shield) -> None: ...
class MemoryBanksProtocolPrivate(Protocol):
async def list_memory_banks(self) -> List[MemoryBankDef]: ...
async def list_memory_banks(self) -> List[MemoryBank]: ...
async def register_memory_bank(self, memory_bank: MemoryBankDef) -> None: ...
async def register_memory_bank(self, memory_bank: MemoryBank) -> None: ...
async def unregister_memory_bank(self, memory_bank_id: str) -> None: ...
class DatasetsProtocolPrivate(Protocol):
async def list_datasets(self) -> List[DatasetDef]: ...
async def register_dataset(self, dataset_def: DatasetDef) -> None: ...
async def register_dataset(self, dataset: Dataset) -> None: ...
class ScoringFunctionsProtocolPrivate(Protocol):
async def list_scoring_functions(self) -> List[ScoringFnDef]: ...
async def list_scoring_functions(self) -> List[ScoringFn]: ...
async def register_scoring_function(self, function_def: ScoringFnDef) -> None: ...
async def register_scoring_function(self, scoring_fn: ScoringFn) -> None: ...
class EvalTasksProtocolPrivate(Protocol):
async def register_eval_task(self, eval_task: EvalTask) -> None: ...
@json_schema_type
@ -81,6 +86,14 @@ class ProviderSpec(BaseModel):
default_factory=list,
description="Higher-level API surfaces may depend on other providers to provide their functionality",
)
deprecation_warning: Optional[str] = Field(
default=None,
description="If this provider is deprecated, specify the warning message here",
)
deprecation_error: Optional[str] = Field(
default=None,
description="If this provider is deprecated and does NOT work, specify the error message here",
)
# used internally by the resolver; this is a hack for now
deps__: List[str] = Field(default_factory=list)
@ -90,6 +103,7 @@ class RoutingTable(Protocol):
def get_provider_impl(self, routing_key: str) -> Any: ...
# TODO: this can now be inlined into RemoteProviderSpec
@json_schema_type
class AdapterSpec(BaseModel):
adapter_type: str = Field(
@ -145,21 +159,27 @@ Fully-qualified name of the module to import. The module is expected to have:
class RemoteProviderConfig(BaseModel):
host: str = "localhost"
port: int
port: Optional[int] = None
protocol: str = "http"
@property
def url(self) -> str:
return f"http://{self.host}:{self.port}"
if self.port is None:
return f"{self.protocol}://{self.host}"
return f"{self.protocol}://{self.host}:{self.port}"
@classmethod
def from_url(cls, url: str) -> "RemoteProviderConfig":
parsed = urlparse(url)
return cls(host=parsed.hostname, port=parsed.port, protocol=parsed.scheme)
@json_schema_type
class RemoteProviderSpec(ProviderSpec):
adapter: Optional[AdapterSpec] = Field(
default=None,
adapter: AdapterSpec = Field(
description="""
If some code is needed to convert the remote responses into Llama Stack compatible
API responses, specify the adapter here. If not specified, it indicates the remote
as being "Llama Stack compatible"
API responses, specify the adapter here.
""",
)
@ -169,38 +189,21 @@ as being "Llama Stack compatible"
@property
def module(self) -> str:
if self.adapter:
return self.adapter.module
return "llama_stack.distribution.client"
return self.adapter.module
@property
def pip_packages(self) -> List[str]:
if self.adapter:
return self.adapter.pip_packages
return []
return self.adapter.pip_packages
@property
def provider_data_validator(self) -> Optional[str]:
if self.adapter:
return self.adapter.provider_data_validator
return None
return self.adapter.provider_data_validator
def is_passthrough(spec: ProviderSpec) -> bool:
return isinstance(spec, RemoteProviderSpec) and spec.adapter is None
# Can avoid this by using Pydantic computed_field
def remote_provider_spec(
api: Api, adapter: Optional[AdapterSpec] = None
) -> RemoteProviderSpec:
config_class = (
adapter.config_class
if adapter and adapter.config_class
else "llama_stack.distribution.datatypes.RemoteProviderConfig"
)
provider_type = f"remote::{adapter.adapter_type}" if adapter else "remote"
def remote_provider_spec(api: Api, adapter: AdapterSpec) -> RemoteProviderSpec:
return RemoteProviderSpec(
api=api, provider_type=provider_type, config_class=config_class, adapter=adapter
api=api,
provider_type=f"remote::{adapter.adapter_type}",
config_class=adapter.config_class,
adapter=adapter,
)

View file

@ -1,120 +0,0 @@
# LocalInference
LocalInference provides a local inference implementation powered by [executorch](https://github.com/pytorch/executorch/).
Llama Stack currently supports on-device inference for iOS with Android coming soon. You can run on-device inference on Android today using [executorch](https://github.com/pytorch/executorch/tree/main/examples/demo-apps/android/LlamaDemo), PyTorchs on-device inference library.
## Installation
We're working on making LocalInference easier to set up. For now, you'll need to import it via `.xcframework`:
1. Clone the executorch submodule in this repo and its dependencies: `git submodule update --init --recursive`
1. Install [Cmake](https://cmake.org/) for the executorch build`
1. Drag `LocalInference.xcodeproj` into your project
1. Add `LocalInference` as a framework in your app target
1. Add a package dependency on https://github.com/pytorch/executorch (branch latest)
1. Add all the kernels / backends from executorch (but not exectuorch itself!) as frameworks in your app target:
- backend_coreml
- backend_mps
- backend_xnnpack
- kernels_custom
- kernels_optimized
- kernels_portable
- kernels_quantized
1. In "Build Settings" > "Other Linker Flags" > "Any iOS Simulator SDK", add:
```
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_optimized-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_custom-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_quantized-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_xnnpack-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_coreml-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_mps-simulator-release.a
```
1. In "Build Settings" > "Other Linker Flags" > "Any iOS SDK", add:
```
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_optimized-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_custom-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_quantized-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_xnnpack-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_coreml-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_mps-simulator-release.a
```
## Preparing a model
1. Prepare a `.pte` file [following the executorch docs](https://github.com/pytorch/executorch/blob/main/examples/models/llama/README.md#step-2-prepare-model)
2. Bundle the `.pte` and `tokenizer.model` file into your app
We now support models quantized using SpinQuant and QAT-LoRA which offer a significant performance boost (demo app on iPhone 13 Pro):
| Llama 3.2 1B | Tokens / Second (total) | | Time-to-First-Token (sec) | |
| :---- | :---- | :---- | :---- | :---- |
| | Haiku | Paragraph | Haiku | Paragraph |
| BF16 | 2.2 | 2.5 | 2.3 | 1.9 |
| QAT+LoRA | 7.1 | 3.3 | 0.37 | 0.24 |
| SpinQuant | 10.1 | 5.2 | 0.2 | 0.2 |
## Using LocalInference
1. Instantiate LocalInference with a DispatchQueue. Optionally, pass it into your agents service:
```swift
init () {
runnerQueue = DispatchQueue(label: "org.meta.llamastack")
inferenceService = LocalInferenceService(queue: runnerQueue)
agentsService = LocalAgentsService(inference: inferenceService)
}
```
2. Before making any inference calls, load your model from your bundle:
```swift
let mainBundle = Bundle.main
inferenceService.loadModel(
modelPath: mainBundle.url(forResource: "llama32_1b_spinquant", withExtension: "pte"),
tokenizerPath: mainBundle.url(forResource: "tokenizer", withExtension: "model"),
completion: {_ in } // use to handle load failures
)
```
3. Make inference calls (or agents calls) as you normally would with LlamaStack:
```
for await chunk in try await agentsService.initAndCreateTurn(
messages: [
.UserMessage(Components.Schemas.UserMessage(
content: .case1("Call functions as needed to handle any actions in the following text:\n\n" + text),
role: .user))
]
) {
```
## Troubleshooting
If you receive errors like "missing package product" or "invalid checksum", try cleaning the build folder and resetting the Swift package cache:
(Opt+Click) Product > Clean Build Folder Immediately
```
rm -rf \
~/Library/org.swift.swiftpm \
~/Library/Caches/org.swift.swiftpm \
~/Library/Caches/com.apple.dt.Xcode \
~/Library/Developer/Xcode/DerivedData
```

View file

@ -1,17 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .config import SafetyConfig
async def get_provider_impl(config: SafetyConfig, deps):
from .safety import MetaReferenceSafetyImpl
assert isinstance(config, SafetyConfig), f"Unexpected config type: {type(config)}"
impl = MetaReferenceSafetyImpl(config, deps)
await impl.initialize()
return impl

View file

@ -1,57 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from abc import ABC, abstractmethod
from typing import List
from llama_models.llama3.api.datatypes import interleaved_text_media_as_str, Message
from pydantic import BaseModel
from llama_stack.apis.safety import * # noqa: F403
CANNED_RESPONSE_TEXT = "I can't answer that. Can I help with something else?"
# TODO: clean this up; just remove this type completely
class ShieldResponse(BaseModel):
is_violation: bool
violation_type: Optional[str] = None
violation_return_message: Optional[str] = None
# TODO: this is a caller / agent concern
class OnViolationAction(Enum):
IGNORE = 0
WARN = 1
RAISE = 2
class ShieldBase(ABC):
def __init__(
self,
on_violation_action: OnViolationAction = OnViolationAction.RAISE,
):
self.on_violation_action = on_violation_action
@abstractmethod
async def run(self, messages: List[Message]) -> ShieldResponse:
raise NotImplementedError()
def message_content_as_str(message: Message) -> str:
return interleaved_text_media_as_str(message.content)
class TextShield(ShieldBase):
def convert_messages_to_text(self, messages: List[Message]) -> str:
return "\n".join([message_content_as_str(m) for m in messages])
async def run(self, messages: List[Message]) -> ShieldResponse:
text = self.convert_messages_to_text(messages)
return await self.run_impl(text)
@abstractmethod
async def run_impl(self, text: str) -> ShieldResponse:
raise NotImplementedError()

View file

@ -1,48 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import List, Optional
from llama_models.sku_list import CoreModelId, safety_models
from pydantic import BaseModel, field_validator
class PromptGuardType(Enum):
injection = "injection"
jailbreak = "jailbreak"
class LlamaGuardShieldConfig(BaseModel):
model: str = "Llama-Guard-3-1B"
excluded_categories: List[str] = []
@field_validator("model")
@classmethod
def validate_model(cls, model: str) -> str:
permitted_models = [
m.descriptor()
for m in safety_models()
if (
m.core_model_id
in {
CoreModelId.llama_guard_3_8b,
CoreModelId.llama_guard_3_1b,
CoreModelId.llama_guard_3_11b_vision,
}
)
]
if model not in permitted_models:
raise ValueError(
f"Invalid model: {model}. Must be one of {permitted_models}"
)
return model
class SafetyConfig(BaseModel):
llama_guard_shield: Optional[LlamaGuardShieldConfig] = None
enable_prompt_guard: Optional[bool] = False

View file

@ -1,145 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import auto, Enum
from typing import List
import torch
from llama_models.llama3.api.datatypes import Message
from termcolor import cprint
from .base import message_content_as_str, OnViolationAction, ShieldResponse, TextShield
class PromptGuardShield(TextShield):
class Mode(Enum):
INJECTION = auto()
JAILBREAK = auto()
_instances = {}
_model_cache = None
@staticmethod
def instance(
model_dir: str,
threshold: float = 0.9,
temperature: float = 1.0,
mode: "PromptGuardShield.Mode" = Mode.JAILBREAK,
on_violation_action=OnViolationAction.RAISE,
) -> "PromptGuardShield":
action_value = on_violation_action.value
key = (model_dir, threshold, temperature, mode, action_value)
if key not in PromptGuardShield._instances:
PromptGuardShield._instances[key] = PromptGuardShield(
model_dir=model_dir,
threshold=threshold,
temperature=temperature,
mode=mode,
on_violation_action=on_violation_action,
)
return PromptGuardShield._instances[key]
def __init__(
self,
model_dir: str,
threshold: float = 0.9,
temperature: float = 1.0,
mode: "PromptGuardShield.Mode" = Mode.JAILBREAK,
on_violation_action: OnViolationAction = OnViolationAction.RAISE,
):
super().__init__(on_violation_action)
assert (
model_dir is not None
), "Must provide a model directory for prompt injection shield"
if temperature <= 0:
raise ValueError("Temperature must be greater than 0")
self.device = "cuda"
if PromptGuardShield._model_cache is None:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSequenceClassification.from_pretrained(
model_dir, device_map=self.device
)
PromptGuardShield._model_cache = (tokenizer, model)
self.tokenizer, self.model = PromptGuardShield._model_cache
self.temperature = temperature
self.threshold = threshold
self.mode = mode
def convert_messages_to_text(self, messages: List[Message]) -> str:
return message_content_as_str(messages[-1])
async def run_impl(self, text: str) -> ShieldResponse:
# run model on messages and return response
inputs = self.tokenizer(text, return_tensors="pt")
inputs = {name: tensor.to(self.model.device) for name, tensor in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs[0]
probabilities = torch.softmax(logits / self.temperature, dim=-1)
score_embedded = probabilities[0, 1].item()
score_malicious = probabilities[0, 2].item()
cprint(
f"Ran PromptGuardShield and got Scores: Embedded: {score_embedded}, Malicious: {score_malicious}",
color="magenta",
)
if self.mode == self.Mode.INJECTION and (
score_embedded + score_malicious > self.threshold
):
return ShieldResponse(
is_violation=True,
violation_type=f"prompt_injection:embedded={score_embedded},malicious={score_malicious}",
violation_return_message="Sorry, I cannot do this.",
)
elif self.mode == self.Mode.JAILBREAK and score_malicious > self.threshold:
return ShieldResponse(
is_violation=True,
violation_type=f"prompt_injection:malicious={score_malicious}",
violation_return_message="Sorry, I cannot do this.",
)
return ShieldResponse(
is_violation=False,
)
class JailbreakShield(PromptGuardShield):
def __init__(
self,
model_dir: str,
threshold: float = 0.9,
temperature: float = 1.0,
on_violation_action: OnViolationAction = OnViolationAction.RAISE,
):
super().__init__(
model_dir=model_dir,
threshold=threshold,
temperature=temperature,
mode=PromptGuardShield.Mode.JAILBREAK,
on_violation_action=on_violation_action,
)
class InjectionShield(PromptGuardShield):
def __init__(
self,
model_dir: str,
threshold: float = 0.9,
temperature: float = 1.0,
on_violation_action: OnViolationAction = OnViolationAction.RAISE,
):
super().__init__(
model_dir=model_dir,
threshold=threshold,
temperature=temperature,
mode=PromptGuardShield.Mode.INJECTION,
on_violation_action=on_violation_action,
)

View file

@ -1,112 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List
from llama_stack.distribution.utils.model_utils import model_local_dir
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.safety import * # noqa: F403
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.distribution.datatypes import Api
from llama_stack.providers.datatypes import ShieldsProtocolPrivate
from .base import OnViolationAction, ShieldBase
from .config import SafetyConfig
from .llama_guard import LlamaGuardShield
from .prompt_guard import InjectionShield, JailbreakShield, PromptGuardShield
PROMPT_GUARD_MODEL = "Prompt-Guard-86M"
class MetaReferenceSafetyImpl(Safety, ShieldsProtocolPrivate):
def __init__(self, config: SafetyConfig, deps) -> None:
self.config = config
self.inference_api = deps[Api.inference]
self.available_shields = []
if config.llama_guard_shield:
self.available_shields.append(ShieldType.llama_guard.value)
if config.enable_prompt_guard:
self.available_shields.append(ShieldType.prompt_guard.value)
async def initialize(self) -> None:
if self.config.enable_prompt_guard:
model_dir = model_local_dir(PROMPT_GUARD_MODEL)
_ = PromptGuardShield.instance(model_dir)
async def shutdown(self) -> None:
pass
async def register_shield(self, shield: ShieldDef) -> None:
raise ValueError("Registering dynamic shields is not supported")
async def list_shields(self) -> List[ShieldDef]:
return [
ShieldDef(
identifier=shield_type,
type=shield_type,
params={},
)
for shield_type in self.available_shields
]
async def run_shield(
self,
shield_type: str,
messages: List[Message],
params: Dict[str, Any] = None,
) -> RunShieldResponse:
shield_def = await self.shield_store.get_shield(shield_type)
if not shield_def:
raise ValueError(f"Unknown shield {shield_type}")
shield = self.get_shield_impl(shield_def)
messages = messages.copy()
# some shields like llama-guard require the first message to be a user message
# since this might be a tool call, first role might not be user
if len(messages) > 0 and messages[0].role != Role.user.value:
messages[0] = UserMessage(content=messages[0].content)
# TODO: we can refactor ShieldBase, etc. to be inline with the API types
res = await shield.run(messages)
violation = None
if res.is_violation and shield.on_violation_action != OnViolationAction.IGNORE:
violation = SafetyViolation(
violation_level=(
ViolationLevel.ERROR
if shield.on_violation_action == OnViolationAction.RAISE
else ViolationLevel.WARN
),
user_message=res.violation_return_message,
metadata={
"violation_type": res.violation_type,
},
)
return RunShieldResponse(violation=violation)
def get_shield_impl(self, shield: ShieldDef) -> ShieldBase:
if shield.type == ShieldType.llama_guard.value:
cfg = self.config.llama_guard_shield
return LlamaGuardShield(
model=cfg.model,
inference_api=self.inference_api,
excluded_categories=cfg.excluded_categories,
)
elif shield.type == ShieldType.prompt_guard.value:
model_dir = model_local_dir(PROMPT_GUARD_MODEL)
subtype = shield.params.get("prompt_guard_type", "injection")
if subtype == "injection":
return InjectionShield.instance(model_dir)
elif subtype == "jailbreak":
return JailbreakShield.instance(model_dir)
else:
raise ValueError(f"Unknown prompt guard type: {subtype}")
else:
raise ValueError(f"Unknown shield type: {shield.type}")

View file

@ -156,7 +156,7 @@ class ChatAgent(ShieldRunnerMixin):
turns = await self.storage.get_session_turns(request.session_id)
messages = []
if len(turns) == 0 and self.agent_config.instructions != "":
if self.agent_config.instructions != "":
messages.append(SystemMessage(content=self.agent_config.instructions))
for i, turn in enumerate(turns):
@ -641,12 +641,13 @@ class ChatAgent(ShieldRunnerMixin):
if session_info.memory_bank_id is None:
bank_id = f"memory_bank_{session_id}"
memory_bank = VectorMemoryBankDef(
identifier=bank_id,
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=512,
await self.memory_banks_api.register_memory_bank(
memory_bank_id=bank_id,
params=VectorMemoryBankParams(
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=512,
),
)
await self.memory_banks_api.register_memory_bank(memory_bank)
await self.storage.add_memory_bank_to_session(session_id, bank_id)
else:
bank_id = session_info.memory_bank_id

View file

@ -4,10 +4,11 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
from pydantic import BaseModel, Field
from llama_stack.providers.utils.kvstore import KVStoreConfig
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
class MetaReferenceAgentsImplConfig(BaseModel):
persistence_store: KVStoreConfig
persistence_store: KVStoreConfig = Field(default=SqliteKVStoreConfig())

View file

@ -80,5 +80,5 @@ class AgentPersistence:
except Exception as e:
print(f"Error parsing turn: {e}")
continue
turns.sort(key=lambda x: (x.completed_at or datetime.min))
return turns

View file

@ -32,18 +32,18 @@ class ShieldRunnerMixin:
self.output_shields = output_shields
async def run_multiple_shields(
self, messages: List[Message], shield_types: List[str]
self, messages: List[Message], identifiers: List[str]
) -> None:
responses = await asyncio.gather(
*[
self.safety_api.run_shield(
shield_type=shield_type,
shield_id=identifier,
messages=messages,
)
for shield_type in shield_types
for identifier in identifiers
]
)
for shield_type, response in zip(shield_types, responses):
for identifier, response in zip(identifiers, responses):
if not response.violation:
continue
@ -52,6 +52,6 @@ class ShieldRunnerMixin:
raise SafetyException(violation)
elif violation.violation_level == ViolationLevel.WARN:
cprint(
f"[Warn]{shield_type} raised a warning",
f"[Warn]{identifier} raised a warning",
color="red",
)

View file

@ -80,7 +80,7 @@ class MockInferenceAPI:
class MockSafetyAPI:
async def run_shield(
self, shield_type: str, messages: List[Message]
self, shield_id: str, messages: List[Message]
) -> RunShieldResponse:
return RunShieldResponse(violation=None)

View file

@ -9,8 +9,7 @@ from typing import List
from llama_stack.apis.inference import Message
from llama_stack.apis.safety import * # noqa: F403
from llama_stack.providers.impls.meta_reference.agents.safety import ShieldRunnerMixin
from ..safety import ShieldRunnerMixin
from .builtin import BaseTool

View file

@ -4,15 +4,15 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .config import MetaReferenceDatasetIOConfig
from .config import LocalFSDatasetIOConfig
async def get_provider_impl(
config: MetaReferenceDatasetIOConfig,
config: LocalFSDatasetIOConfig,
_deps,
):
from .datasetio import MetaReferenceDatasetIOImpl
from .datasetio import LocalFSDatasetIOImpl
impl = MetaReferenceDatasetIOImpl(config)
impl = LocalFSDatasetIOImpl(config)
await impl.initialize()
return impl

View file

@ -6,4 +6,4 @@
from llama_stack.apis.datasetio import * # noqa: F401, F403
class MetaReferenceDatasetIOConfig(BaseModel): ...
class LocalFSDatasetIOConfig(BaseModel): ...

View file

@ -3,22 +3,19 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import io
from typing import List, Optional
from typing import Optional
import pandas
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.datasetio import * # noqa: F403
import base64
from abc import ABC, abstractmethod
from dataclasses import dataclass
from urllib.parse import unquote
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
from llama_stack.providers.utils.memory.vector_store import parse_data_url
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
from .config import MetaReferenceDatasetIOConfig
from .config import LocalFSDatasetIOConfig
class BaseDataset(ABC):
@ -40,12 +37,12 @@ class BaseDataset(ABC):
@dataclass
class DatasetInfo:
dataset_def: DatasetDef
dataset_def: Dataset
dataset_impl: BaseDataset
class PandasDataframeDataset(BaseDataset):
def __init__(self, dataset_def: DatasetDef, *args, **kwargs) -> None:
def __init__(self, dataset_def: Dataset, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.dataset_def = dataset_def
self.df = None
@ -73,37 +70,15 @@ class PandasDataframeDataset(BaseDataset):
if self.df is not None:
return
# TODO: more robust support w/ data url
if self.dataset_def.url.uri.endswith(".csv"):
df = pandas.read_csv(self.dataset_def.url.uri)
elif self.dataset_def.url.uri.endswith(".xlsx"):
df = pandas.read_excel(self.dataset_def.url.uri)
elif self.dataset_def.url.uri.startswith("data:"):
parts = parse_data_url(self.dataset_def.url.uri)
data = parts["data"]
if parts["is_base64"]:
data = base64.b64decode(data)
else:
data = unquote(data)
encoding = parts["encoding"] or "utf-8"
data = data.encode(encoding)
mime_type = parts["mimetype"]
mime_category = mime_type.split("/")[0]
data_bytes = io.BytesIO(data)
if mime_category == "text":
df = pandas.read_csv(data_bytes)
else:
df = pandas.read_excel(data_bytes)
else:
raise ValueError(f"Unsupported file type: {self.dataset_def.url}")
df = get_dataframe_from_url(self.dataset_def.url)
if df is None:
raise ValueError(f"Failed to load dataset from {self.dataset_def.url}")
self.df = self._validate_dataset_schema(df)
class MetaReferenceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
def __init__(self, config: MetaReferenceDatasetIOConfig) -> None:
class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
def __init__(self, config: LocalFSDatasetIOConfig) -> None:
self.config = config
# local registry for keeping track of datasets within the provider
self.dataset_infos = {}
@ -114,17 +89,14 @@ class MetaReferenceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
async def register_dataset(
self,
dataset_def: DatasetDef,
dataset: Dataset,
) -> None:
dataset_impl = PandasDataframeDataset(dataset_def)
self.dataset_infos[dataset_def.identifier] = DatasetInfo(
dataset_def=dataset_def,
dataset_impl = PandasDataframeDataset(dataset)
self.dataset_infos[dataset.identifier] = DatasetInfo(
dataset_def=dataset,
dataset_impl=dataset_impl,
)
async def list_datasets(self) -> List[DatasetDef]:
return [i.dataset_def for i in self.dataset_infos.values()]
async def get_rows_paginated(
self,
dataset_id: str,

View file

@ -0,0 +1,17 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.distribution.utils.config_dirs import RUNTIME_BASE_DIR
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from pydantic import BaseModel
class MetaReferenceEvalConfig(BaseModel):
kvstore: KVStoreConfig = SqliteKVStoreConfig(
db_path=(RUNTIME_BASE_DIR / "meta_reference_eval.db").as_posix()
) # Uses SQLite config specific to Meta Reference Eval storage

View file

@ -6,16 +6,22 @@
from enum import Enum
from llama_models.llama3.api.datatypes import * # noqa: F403
from .....apis.common.job_types import Job
from .....apis.eval.eval import Eval, EvalTaskConfig, EvaluateResponse, JobStatus
from llama_stack.apis.common.type_system import * # noqa: F403
from llama_stack.apis.common.job_types import Job
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.eval import Eval, EvalCandidate, EvaluateResponse, JobStatus
from llama_stack.apis.eval_tasks import EvalTask
from llama_stack.apis.inference import Inference
from llama_stack.apis.scoring import Scoring
from llama_stack.providers.datatypes import EvalTasksProtocolPrivate
from llama_stack.providers.utils.kvstore import kvstore_impl
from tqdm import tqdm
from .config import MetaReferenceEvalConfig
EVAL_TASKS_PREFIX = "eval_tasks:"
class ColumnName(Enum):
input_query = "input_query"
@ -25,7 +31,7 @@ class ColumnName(Enum):
generated_answer = "generated_answer"
class MetaReferenceEvalImpl(Eval):
class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
def __init__(
self,
config: MetaReferenceEvalConfig,
@ -43,12 +49,32 @@ class MetaReferenceEvalImpl(Eval):
# TODO: assume sync job, will need jobs API for async scheduling
self.jobs = {}
async def initialize(self) -> None: ...
self.eval_tasks = {}
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
# Load existing eval_tasks from kvstore
start_key = EVAL_TASKS_PREFIX
end_key = f"{EVAL_TASKS_PREFIX}\xff"
stored_eval_tasks = await self.kvstore.range(start_key, end_key)
for eval_task in stored_eval_tasks:
eval_task = EvalTask.model_validate_json(eval_task)
self.eval_tasks[eval_task.identifier] = eval_task
async def shutdown(self) -> None: ...
async def register_eval_task(self, task_def: EvalTask) -> None:
# Store in kvstore
key = f"{EVAL_TASKS_PREFIX}{task_def.identifier}"
await self.kvstore.set(
key=key,
value=task_def.json(),
)
self.eval_tasks[task_def.identifier] = task_def
async def validate_eval_input_dataset_schema(self, dataset_id: str) -> None:
dataset_def = await self.datasets_api.get_dataset(dataset_identifier=dataset_id)
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
if not dataset_def.dataset_schema or len(dataset_def.dataset_schema) == 0:
raise ValueError(f"Dataset {dataset_id} does not have a schema defined.")
@ -70,21 +96,28 @@ class MetaReferenceEvalImpl(Eval):
f"Dataset {dataset_id} does not have a correct input schema in {expected_schemas}"
)
async def evaluate_batch(
async def run_eval(
self,
dataset_id: str,
candidate: EvalCandidate,
scoring_functions: List[str],
task_id: str,
task_config: EvalTaskConfig,
) -> Job:
task_def = self.eval_tasks[task_id]
dataset_id = task_def.dataset_id
candidate = task_config.eval_candidate
scoring_functions = task_def.scoring_functions
await self.validate_eval_input_dataset_schema(dataset_id=dataset_id)
all_rows = await self.datasetio_api.get_rows_paginated(
dataset_id=dataset_id,
rows_in_page=-1,
rows_in_page=(
-1 if task_config.num_examples is None else task_config.num_examples
),
)
res = await self.evaluate(
res = await self.evaluate_rows(
task_id=task_id,
input_rows=all_rows.rows,
candidate=candidate,
scoring_functions=scoring_functions,
task_config=task_config,
)
# TODO: currently needs to wait for generation before returning
@ -93,12 +126,14 @@ class MetaReferenceEvalImpl(Eval):
self.jobs[job_id] = res
return Job(job_id=job_id)
async def evaluate(
async def evaluate_rows(
self,
task_id: str,
input_rows: List[Dict[str, Any]],
candidate: EvalCandidate,
scoring_functions: List[str],
task_config: EvalTaskConfig,
) -> EvaluateResponse:
candidate = task_config.eval_candidate
if candidate.type == "agent":
raise NotImplementedError(
"Evaluation with generation has not been implemented for agents"
@ -108,7 +143,7 @@ class MetaReferenceEvalImpl(Eval):
), "SamplingParams.max_tokens must be provided"
generations = []
for x in input_rows:
for x in tqdm(input_rows):
if ColumnName.completion_input.value in x:
input_content = eval(str(x[ColumnName.completion_input.value]))
response = await self.inference_api.completion(
@ -122,14 +157,17 @@ class MetaReferenceEvalImpl(Eval):
}
)
elif ColumnName.chat_completion_input.value in x:
input_messages = eval(str(x[ColumnName.chat_completion_input.value]))
chat_completion_input_str = str(
x[ColumnName.chat_completion_input.value]
)
input_messages = eval(chat_completion_input_str)
input_messages = [UserMessage(**x) for x in input_messages]
messages = []
if candidate.system_message:
messages.append(candidate.system_message)
messages += input_messages
response = await self.inference_api.chat_completion(
model=candidate.model,
model_id=candidate.model,
messages=messages,
sampling_params=candidate.sampling_params,
)
@ -147,23 +185,33 @@ class MetaReferenceEvalImpl(Eval):
for input_r, generated_r in zip(input_rows, generations)
]
if task_config.type == "app" and task_config.scoring_params is not None:
scoring_functions_dict = {
scoring_fn_id: task_config.scoring_params.get(scoring_fn_id, None)
for scoring_fn_id in scoring_functions
}
else:
scoring_functions_dict = {
scoring_fn_id: None for scoring_fn_id in scoring_functions
}
score_response = await self.scoring_api.score(
input_rows=score_input_rows, scoring_functions=scoring_functions
input_rows=score_input_rows, scoring_functions=scoring_functions_dict
)
return EvaluateResponse(generations=generations, scores=score_response.results)
async def job_status(self, job_id: str) -> Optional[JobStatus]:
async def job_status(self, task_id: str, job_id: str) -> Optional[JobStatus]:
if job_id in self.jobs:
return JobStatus.completed
return None
async def job_cancel(self, job_id: str) -> None:
async def job_cancel(self, task_id: str, job_id: str) -> None:
raise NotImplementedError("Job cancel is not implemented yet")
async def job_result(self, job_id: str) -> EvaluateResponse:
status = await self.job_status(job_id)
async def job_result(self, task_id: str, job_id: str) -> EvaluateResponse:
status = await self.job_status(task_id, job_id)
if not status or status != JobStatus.completed:
raise ValueError(f"Job is not completed, Status: {status.value}")

View file

@ -86,6 +86,7 @@ class Llama:
and loads the pre-trained model and tokenizer.
"""
model = resolve_model(config.model)
llama_model = model.core_model_id.value
if not torch.distributed.is_initialized():
torch.distributed.init_process_group("nccl")
@ -186,13 +187,20 @@ class Llama:
model.load_state_dict(state_dict, strict=False)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return Llama(model, tokenizer, model_args)
return Llama(model, tokenizer, model_args, llama_model)
def __init__(self, model: Transformer, tokenizer: Tokenizer, args: ModelArgs):
def __init__(
self,
model: Transformer,
tokenizer: Tokenizer,
args: ModelArgs,
llama_model: str,
):
self.args = args
self.model = model
self.tokenizer = tokenizer
self.formatter = ChatFormat(tokenizer)
self.llama_model = llama_model
@torch.inference_mode()
def generate(
@ -369,7 +377,7 @@ class Llama:
self,
request: ChatCompletionRequest,
) -> Generator:
messages = chat_completion_request_to_messages(request)
messages = chat_completion_request_to_messages(request, self.llama_model)
sampling_params = request.sampling_params
max_gen_len = sampling_params.max_tokens

View file

@ -11,8 +11,15 @@ from typing import AsyncGenerator, List
from llama_models.sku_list import resolve_model
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.providers.utils.inference.model_registry import build_model_alias
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.datatypes import ModelDef, ModelsProtocolPrivate
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.prompt_adapter import (
convert_image_media_to_url,
request_has_media,
)
from .config import MetaReferenceInferenceConfig
from .generation import Llama
@ -23,10 +30,19 @@ from .model_parallel import LlamaModelParallelGenerator
SEMAPHORE = asyncio.Semaphore(1)
class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
class MetaReferenceInferenceImpl(Inference, ModelRegistryHelper, ModelsProtocolPrivate):
def __init__(self, config: MetaReferenceInferenceConfig) -> None:
self.config = config
model = resolve_model(config.model)
ModelRegistryHelper.__init__(
self,
[
build_model_alias(
model.descriptor(),
model.core_model_id.value,
)
],
)
if model is None:
raise RuntimeError(f"Unknown model: {config.model}, Run `llama model list`")
self.model = model
@ -40,17 +56,6 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
else:
self.generator = Llama.build(self.config)
async def register_model(self, model: ModelDef) -> None:
raise ValueError("Dynamic model registration is not supported")
async def list_models(self) -> List[ModelDef]:
return [
ModelDef(
identifier=self.model.descriptor(),
llama_model=self.model.descriptor(),
)
]
async def shutdown(self) -> None:
if self.config.create_distributed_process_group:
self.generator.stop()
@ -66,9 +71,12 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
f"Model mismatch: {request.model} != {self.model.descriptor()}"
)
async def unregister_model(self, model_id: str) -> None:
pass
async def completion(
self,
model: str,
model_id: str,
content: InterleavedTextMedia,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
@ -79,7 +87,7 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}"
request = CompletionRequest(
model=model,
model=model_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
@ -87,6 +95,7 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
logprobs=logprobs,
)
self.check_model(request)
request = await request_with_localized_media(request)
if request.stream:
return self._stream_completion(request)
@ -185,7 +194,7 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
async def chat_completion(
self,
model: str,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
@ -200,7 +209,7 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
# wrapper request to make it easier to pass around (internal only, not exposed to API)
request = ChatCompletionRequest(
model=model,
model=model_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
@ -211,6 +220,7 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
logprobs=logprobs,
)
self.check_model(request)
request = await request_with_localized_media(request)
if self.config.create_distributed_process_group:
if SEMAPHORE.locked():
@ -384,7 +394,35 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
async def embeddings(
self,
model: str,
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()
async def request_with_localized_media(
request: Union[ChatCompletionRequest, CompletionRequest],
) -> Union[ChatCompletionRequest, CompletionRequest]:
if not request_has_media(request):
return request
async def _convert_single_content(content):
if isinstance(content, ImageMedia):
url = await convert_image_media_to_url(content, download=True)
return ImageMedia(image=URL(uri=url))
else:
return content
async def _convert_content(content):
if isinstance(content, list):
return [await _convert_single_content(c) for c in content]
else:
return await _convert_single_content(content)
if isinstance(request, ChatCompletionRequest):
for m in request.messages:
m.content = await _convert_content(m.content)
else:
request.content = await _convert_content(request.content)
return request

View file

@ -20,6 +20,7 @@ from llama_models.datatypes import CheckpointQuantizationFormat
from llama_models.llama3.api.args import ModelArgs
from llama_models.llama3.reference_impl.model import Transformer, TransformerBlock
from llama_models.sku_list import resolve_model
from termcolor import cprint
from torch import nn, Tensor
@ -27,9 +28,7 @@ from torchao.quantization.GPTQ import Int8DynActInt4WeightLinear
from llama_stack.apis.inference import QuantizationType
from llama_stack.providers.impls.meta_reference.inference.config import (
MetaReferenceQuantizedInferenceConfig,
)
from ..config import MetaReferenceQuantizedInferenceConfig
def swiglu_wrapper(

Some files were not shown because too many files have changed in this diff Show more