mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-03 09:21:45 +00:00
Start some integration tests with an OpenAI client
This starts to stub in some integration tests for the OpenAI-compatible server APIs using an OpenAI client. Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
parent
a1e9cff37c
commit
52b4766949
1 changed files with 83 additions and 0 deletions
83
tests/integration/inference/test_openai_completion.py
Normal file
83
tests/integration/inference/test_openai_completion.py
Normal file
|
@ -0,0 +1,83 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
|
||||
import pytest
|
||||
from openai import OpenAI
|
||||
|
||||
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
|
||||
|
||||
from ..test_cases.test_case import TestCase
|
||||
|
||||
|
||||
def skip_if_model_doesnt_support_openai_completion(client_with_models, model_id):
|
||||
if isinstance(client_with_models, LlamaStackAsLibraryClient):
|
||||
pytest.skip("OpenAI completions are not supported when testing with library client yet.")
|
||||
|
||||
models = {m.identifier: m for m in client_with_models.models.list()}
|
||||
models.update({m.provider_resource_id: m for m in client_with_models.models.list()})
|
||||
provider_id = models[model_id].provider_id
|
||||
providers = {p.provider_id: p for p in client_with_models.providers.list()}
|
||||
provider = providers[provider_id]
|
||||
if provider.provider_type in (
|
||||
"inline::meta-reference",
|
||||
"inline::sentence-transformers",
|
||||
"inline::vllm",
|
||||
"remote::bedrock",
|
||||
"remote::cerebras",
|
||||
"remote::databricks",
|
||||
"remote::nvidia",
|
||||
"remote::runpod",
|
||||
"remote::sambanova",
|
||||
"remote::tgi",
|
||||
):
|
||||
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support OpenAI completions.")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def openai_client(client_with_models, text_model_id):
|
||||
skip_if_model_doesnt_support_openai_completion(client_with_models, text_model_id)
|
||||
base_url = f"{client_with_models.base_url}/v1/openai/v1"
|
||||
return OpenAI(base_url=base_url, api_key="bar")
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"test_case",
|
||||
[
|
||||
"inference:completion:sanity",
|
||||
],
|
||||
)
|
||||
def test_openai_completion_non_streaming(openai_client, text_model_id, test_case):
|
||||
tc = TestCase(test_case)
|
||||
|
||||
response = openai_client.completions.create(
|
||||
model=text_model_id,
|
||||
prompt=tc["content"],
|
||||
stream=False,
|
||||
)
|
||||
assert len(response.choices) > 0
|
||||
choice = response.choices[0]
|
||||
assert len(choice.text) > 10
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"test_case",
|
||||
[
|
||||
"inference:completion:sanity",
|
||||
],
|
||||
)
|
||||
def test_openai_completion_streaming(openai_client, text_model_id, test_case):
|
||||
tc = TestCase(test_case)
|
||||
|
||||
response = openai_client.completions.create(
|
||||
model=text_model_id,
|
||||
prompt=tc["content"],
|
||||
stream=True,
|
||||
max_tokens=50,
|
||||
)
|
||||
streamed_content = [chunk.choices[0].text for chunk in response]
|
||||
content_str = "".join(streamed_content).lower().strip()
|
||||
assert len(content_str) > 10
|
Loading…
Add table
Add a link
Reference in a new issue