mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-30 19:29:59 +00:00
This starts to stub in some integration tests for the OpenAI-compatible server APIs using an OpenAI client. Signed-off-by: Ben Browning <bbrownin@redhat.com>
83 lines
2.6 KiB
Python
83 lines
2.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
import pytest
|
|
from openai import OpenAI
|
|
|
|
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
|
|
|
|
from ..test_cases.test_case import TestCase
|
|
|
|
|
|
def skip_if_model_doesnt_support_openai_completion(client_with_models, model_id):
|
|
if isinstance(client_with_models, LlamaStackAsLibraryClient):
|
|
pytest.skip("OpenAI completions are not supported when testing with library client yet.")
|
|
|
|
models = {m.identifier: m for m in client_with_models.models.list()}
|
|
models.update({m.provider_resource_id: m for m in client_with_models.models.list()})
|
|
provider_id = models[model_id].provider_id
|
|
providers = {p.provider_id: p for p in client_with_models.providers.list()}
|
|
provider = providers[provider_id]
|
|
if provider.provider_type in (
|
|
"inline::meta-reference",
|
|
"inline::sentence-transformers",
|
|
"inline::vllm",
|
|
"remote::bedrock",
|
|
"remote::cerebras",
|
|
"remote::databricks",
|
|
"remote::nvidia",
|
|
"remote::runpod",
|
|
"remote::sambanova",
|
|
"remote::tgi",
|
|
):
|
|
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support OpenAI completions.")
|
|
|
|
|
|
@pytest.fixture
|
|
def openai_client(client_with_models, text_model_id):
|
|
skip_if_model_doesnt_support_openai_completion(client_with_models, text_model_id)
|
|
base_url = f"{client_with_models.base_url}/v1/openai/v1"
|
|
return OpenAI(base_url=base_url, api_key="bar")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"test_case",
|
|
[
|
|
"inference:completion:sanity",
|
|
],
|
|
)
|
|
def test_openai_completion_non_streaming(openai_client, text_model_id, test_case):
|
|
tc = TestCase(test_case)
|
|
|
|
response = openai_client.completions.create(
|
|
model=text_model_id,
|
|
prompt=tc["content"],
|
|
stream=False,
|
|
)
|
|
assert len(response.choices) > 0
|
|
choice = response.choices[0]
|
|
assert len(choice.text) > 10
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"test_case",
|
|
[
|
|
"inference:completion:sanity",
|
|
],
|
|
)
|
|
def test_openai_completion_streaming(openai_client, text_model_id, test_case):
|
|
tc = TestCase(test_case)
|
|
|
|
response = openai_client.completions.create(
|
|
model=text_model_id,
|
|
prompt=tc["content"],
|
|
stream=True,
|
|
max_tokens=50,
|
|
)
|
|
streamed_content = [chunk.choices[0].text for chunk in response]
|
|
content_str = "".join(streamed_content).lower().strip()
|
|
assert len(content_str) > 10
|