mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 18:00:36 +00:00
Merge 5ec6f5dcff into 4237eb4aaa
This commit is contained in:
commit
5bd80a693c
18 changed files with 7531 additions and 14 deletions
|
|
@ -1230,3 +1230,121 @@ async def test_embedding_config_required_model_missing(vector_io_adapter):
|
|||
|
||||
with pytest.raises(ValueError, match="embedding_model is required"):
|
||||
await vector_io_adapter.openai_create_vector_store(params)
|
||||
|
||||
|
||||
async def test_query_expansion_functionality(vector_io_adapter):
|
||||
"""Test query expansion with simplified global configuration approach."""
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
from llama_stack.core.datatypes import QualifiedModel, RewriteQueryParams
|
||||
from llama_stack.providers.utils.memory.constants import DEFAULT_QUERY_REWRITE_PROMPT
|
||||
from llama_stack.providers.utils.memory.rewrite_query_config import set_default_rewrite_query_config
|
||||
from llama_stack.providers.utils.memory.vector_store import VectorStoreWithIndex
|
||||
from llama_stack_api import QueryChunksResponse
|
||||
|
||||
# Mock a simple vector store and index
|
||||
mock_vector_store = MagicMock()
|
||||
mock_vector_store.embedding_model = "test/embedding"
|
||||
mock_inference_api = MagicMock()
|
||||
mock_index = MagicMock()
|
||||
|
||||
# Create VectorStoreWithIndex with simplified constructor
|
||||
vector_store_with_index = VectorStoreWithIndex(
|
||||
vector_store=mock_vector_store,
|
||||
index=mock_index,
|
||||
inference_api=mock_inference_api,
|
||||
)
|
||||
|
||||
# Mock the query_vector method to return a simple response
|
||||
mock_response = QueryChunksResponse(chunks=[], scores=[])
|
||||
mock_index.query_vector = AsyncMock(return_value=mock_response)
|
||||
|
||||
# Mock embeddings generation
|
||||
mock_inference_api.openai_embeddings = AsyncMock(
|
||||
return_value=MagicMock(data=[MagicMock(embedding=[0.1, 0.2, 0.3])])
|
||||
)
|
||||
|
||||
# Test 1: Query expansion with default prompt (no custom prompt configured)
|
||||
mock_vector_stores_config = MagicMock()
|
||||
mock_vector_stores_config.rewrite_query_params = RewriteQueryParams(
|
||||
model=QualifiedModel(provider_id="test", model_id="llama"), max_tokens=100, temperature=0.3
|
||||
)
|
||||
|
||||
# Set global config
|
||||
set_default_rewrite_query_config(mock_vector_stores_config)
|
||||
|
||||
# Mock chat completion for query rewriting
|
||||
mock_inference_api.openai_chat_completion = AsyncMock(
|
||||
return_value=MagicMock(choices=[MagicMock(message=MagicMock(content="expanded test query"))])
|
||||
)
|
||||
|
||||
params = {"rewrite_query": True, "max_chunks": 5}
|
||||
result = await vector_store_with_index.query_chunks("test query", params)
|
||||
|
||||
# Verify chat completion was called for query rewriting
|
||||
mock_inference_api.openai_chat_completion.assert_called_once()
|
||||
chat_call_args = mock_inference_api.openai_chat_completion.call_args[0][0]
|
||||
assert chat_call_args.model == "test/llama"
|
||||
|
||||
# Verify default prompt is used (contains our built-in prompt text)
|
||||
prompt_text = chat_call_args.messages[0].content
|
||||
expected_prompt = DEFAULT_QUERY_REWRITE_PROMPT.format(query="test query")
|
||||
assert prompt_text == expected_prompt
|
||||
|
||||
# Verify default inference parameters are used
|
||||
assert chat_call_args.max_tokens == 100 # Default value
|
||||
assert chat_call_args.temperature == 0.3 # Default value
|
||||
|
||||
# Verify the rest of the flow proceeded normally
|
||||
mock_inference_api.openai_embeddings.assert_called_once()
|
||||
mock_index.query_vector.assert_called_once()
|
||||
assert result == mock_response
|
||||
|
||||
# Test 1b: Query expansion with custom prompt override and inference parameters
|
||||
mock_inference_api.reset_mock()
|
||||
mock_index.reset_mock()
|
||||
|
||||
mock_vector_stores_config.rewrite_query_params = RewriteQueryParams(
|
||||
model=QualifiedModel(provider_id="test", model_id="llama"),
|
||||
prompt="Custom prompt for rewriting: {query}",
|
||||
max_tokens=150,
|
||||
temperature=0.7,
|
||||
)
|
||||
set_default_rewrite_query_config(mock_vector_stores_config)
|
||||
|
||||
result = await vector_store_with_index.query_chunks("test query", params)
|
||||
|
||||
# Verify custom prompt and parameters are used
|
||||
mock_inference_api.openai_chat_completion.assert_called_once()
|
||||
chat_call_args = mock_inference_api.openai_chat_completion.call_args[0][0]
|
||||
prompt_text = chat_call_args.messages[0].content
|
||||
assert prompt_text == "Custom prompt for rewriting: test query"
|
||||
assert "Expand this query with relevant synonyms" not in prompt_text # Default not used
|
||||
|
||||
# Verify custom inference parameters
|
||||
assert chat_call_args.max_tokens == 150
|
||||
assert chat_call_args.temperature == 0.7
|
||||
|
||||
# Test 2: Error when query rewriting is requested but no global model is configured
|
||||
mock_inference_api.reset_mock()
|
||||
mock_index.reset_mock()
|
||||
|
||||
# Clear global config
|
||||
set_default_rewrite_query_config(None)
|
||||
|
||||
params = {"rewrite_query": True, "max_chunks": 5}
|
||||
with pytest.raises(ValueError, match="Query rewriting requested but not configured"):
|
||||
await vector_store_with_index.query_chunks("test query", params)
|
||||
|
||||
# Test 3: Normal behavior without rewrite_query parameter
|
||||
mock_inference_api.reset_mock()
|
||||
mock_index.reset_mock()
|
||||
|
||||
params_no_rewrite = {"max_chunks": 5}
|
||||
result3 = await vector_store_with_index.query_chunks("test query", params_no_rewrite)
|
||||
|
||||
# Neither chat completion nor query rewriting should be called
|
||||
mock_inference_api.openai_chat_completion.assert_not_called()
|
||||
mock_inference_api.openai_embeddings.assert_called_once()
|
||||
mock_index.query_vector.assert_called_once()
|
||||
assert result3 == mock_response
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue