mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 12:07:34 +00:00
chore: turn OpenAIMixin into a pydantic.BaseModel
- implement get_api_key instead of relying on LiteLLMOpenAIMixin.get_api_key - remove use of LiteLLMOpenAIMixin - add default initialize/shutdown methods to OpenAIMixin - remove __init__s to allow proper pydantic construction - remove dead code from vllm adapter and associated / duplicate unit tests - update vllm adapter to use openaimixin for model registration - remove ModelRegistryHelper from fireworks & together adapters - remove Inference from nvidia adapter - complete type hints on embedding_model_metadata - allow extra fields on OpenAIMixin, for model_store, __provider_id__, etc - new recordings for ollama
This commit is contained in:
parent
ce77c27ff8
commit
60f0056cbc
57 changed files with 12520 additions and 1254 deletions
|
@ -22,7 +22,7 @@ def test_groq_provider_openai_client_caching():
|
|||
"""Ensure the Groq provider does not cache api keys across client requests"""
|
||||
|
||||
config = GroqConfig()
|
||||
inference_adapter = GroqInferenceAdapter(config)
|
||||
inference_adapter = GroqInferenceAdapter(config=config)
|
||||
|
||||
inference_adapter.__provider_spec__ = MagicMock()
|
||||
inference_adapter.__provider_spec__.provider_data_validator = (
|
||||
|
@ -40,7 +40,7 @@ def test_openai_provider_openai_client_caching():
|
|||
"""Ensure the OpenAI provider does not cache api keys across client requests"""
|
||||
|
||||
config = OpenAIConfig()
|
||||
inference_adapter = OpenAIInferenceAdapter(config)
|
||||
inference_adapter = OpenAIInferenceAdapter(config=config)
|
||||
|
||||
inference_adapter.__provider_spec__ = MagicMock()
|
||||
inference_adapter.__provider_spec__.provider_data_validator = (
|
||||
|
@ -59,7 +59,7 @@ def test_together_provider_openai_client_caching():
|
|||
"""Ensure the Together provider does not cache api keys across client requests"""
|
||||
|
||||
config = TogetherImplConfig()
|
||||
inference_adapter = TogetherInferenceAdapter(config)
|
||||
inference_adapter = TogetherInferenceAdapter(config=config)
|
||||
|
||||
inference_adapter.__provider_spec__ = MagicMock()
|
||||
inference_adapter.__provider_spec__.provider_data_validator = (
|
||||
|
@ -77,7 +77,7 @@ def test_together_provider_openai_client_caching():
|
|||
def test_llama_compat_provider_openai_client_caching():
|
||||
"""Ensure the LlamaCompat provider does not cache api keys across client requests"""
|
||||
config = LlamaCompatConfig()
|
||||
inference_adapter = LlamaCompatInferenceAdapter(config)
|
||||
inference_adapter = LlamaCompatInferenceAdapter(config=config)
|
||||
|
||||
inference_adapter.__provider_spec__ = MagicMock()
|
||||
inference_adapter.__provider_spec__.provider_data_validator = (
|
||||
|
|
|
@ -18,7 +18,7 @@ class TestOpenAIBaseURLConfig:
|
|||
def test_default_base_url_without_env_var(self):
|
||||
"""Test that the adapter uses the default OpenAI base URL when no environment variable is set."""
|
||||
config = OpenAIConfig(api_key="test-key")
|
||||
adapter = OpenAIInferenceAdapter(config)
|
||||
adapter = OpenAIInferenceAdapter(config=config)
|
||||
adapter.provider_data_api_key_field = None # Disable provider data for this test
|
||||
|
||||
assert adapter.get_base_url() == "https://api.openai.com/v1"
|
||||
|
@ -27,7 +27,7 @@ class TestOpenAIBaseURLConfig:
|
|||
"""Test that the adapter uses a custom base URL when provided in config."""
|
||||
custom_url = "https://custom.openai.com/v1"
|
||||
config = OpenAIConfig(api_key="test-key", base_url=custom_url)
|
||||
adapter = OpenAIInferenceAdapter(config)
|
||||
adapter = OpenAIInferenceAdapter(config=config)
|
||||
adapter.provider_data_api_key_field = None # Disable provider data for this test
|
||||
|
||||
assert adapter.get_base_url() == custom_url
|
||||
|
@ -39,7 +39,7 @@ class TestOpenAIBaseURLConfig:
|
|||
config_data = OpenAIConfig.sample_run_config(api_key="test-key")
|
||||
processed_config = replace_env_vars(config_data)
|
||||
config = OpenAIConfig.model_validate(processed_config)
|
||||
adapter = OpenAIInferenceAdapter(config)
|
||||
adapter = OpenAIInferenceAdapter(config=config)
|
||||
adapter.provider_data_api_key_field = None # Disable provider data for this test
|
||||
|
||||
assert adapter.get_base_url() == "https://env.openai.com/v1"
|
||||
|
@ -49,7 +49,7 @@ class TestOpenAIBaseURLConfig:
|
|||
"""Test that explicit config value overrides environment variable."""
|
||||
custom_url = "https://config.openai.com/v1"
|
||||
config = OpenAIConfig(api_key="test-key", base_url=custom_url)
|
||||
adapter = OpenAIInferenceAdapter(config)
|
||||
adapter = OpenAIInferenceAdapter(config=config)
|
||||
adapter.provider_data_api_key_field = None # Disable provider data for this test
|
||||
|
||||
# Config should take precedence over environment variable
|
||||
|
@ -60,7 +60,7 @@ class TestOpenAIBaseURLConfig:
|
|||
"""Test that the OpenAI client is initialized with the configured base URL."""
|
||||
custom_url = "https://test.openai.com/v1"
|
||||
config = OpenAIConfig(api_key="test-key", base_url=custom_url)
|
||||
adapter = OpenAIInferenceAdapter(config)
|
||||
adapter = OpenAIInferenceAdapter(config=config)
|
||||
adapter.provider_data_api_key_field = None # Disable provider data for this test
|
||||
|
||||
# Mock the get_api_key method since it's delegated to LiteLLMOpenAIMixin
|
||||
|
@ -80,7 +80,7 @@ class TestOpenAIBaseURLConfig:
|
|||
"""Test that check_model_availability uses the configured base URL."""
|
||||
custom_url = "https://test.openai.com/v1"
|
||||
config = OpenAIConfig(api_key="test-key", base_url=custom_url)
|
||||
adapter = OpenAIInferenceAdapter(config)
|
||||
adapter = OpenAIInferenceAdapter(config=config)
|
||||
adapter.provider_data_api_key_field = None # Disable provider data for this test
|
||||
|
||||
# Mock the get_api_key method
|
||||
|
@ -122,7 +122,7 @@ class TestOpenAIBaseURLConfig:
|
|||
config_data = OpenAIConfig.sample_run_config(api_key="test-key")
|
||||
processed_config = replace_env_vars(config_data)
|
||||
config = OpenAIConfig.model_validate(processed_config)
|
||||
adapter = OpenAIInferenceAdapter(config)
|
||||
adapter = OpenAIInferenceAdapter(config=config)
|
||||
adapter.provider_data_api_key_field = None # Disable provider data for this test
|
||||
|
||||
# Mock the get_api_key method
|
||||
|
|
|
@ -5,45 +5,21 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import time
|
||||
from unittest.mock import AsyncMock, MagicMock, PropertyMock, patch
|
||||
|
||||
import pytest
|
||||
from openai.types.chat.chat_completion_chunk import (
|
||||
ChatCompletionChunk as OpenAIChatCompletionChunk,
|
||||
)
|
||||
from openai.types.chat.chat_completion_chunk import (
|
||||
Choice as OpenAIChoiceChunk,
|
||||
)
|
||||
from openai.types.chat.chat_completion_chunk import (
|
||||
ChoiceDelta as OpenAIChoiceDelta,
|
||||
)
|
||||
from openai.types.chat.chat_completion_chunk import (
|
||||
ChoiceDeltaToolCall as OpenAIChoiceDeltaToolCall,
|
||||
)
|
||||
from openai.types.chat.chat_completion_chunk import (
|
||||
ChoiceDeltaToolCallFunction as OpenAIChoiceDeltaToolCallFunction,
|
||||
)
|
||||
from openai.types.model import Model as OpenAIModel
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponseEventType,
|
||||
OpenAIAssistantMessageParam,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChoice,
|
||||
ToolChoice,
|
||||
UserMessage,
|
||||
)
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.models.llama.datatypes import StopReason
|
||||
from llama_stack.providers.datatypes import HealthStatus
|
||||
from llama_stack.providers.remote.inference.vllm.config import VLLMInferenceAdapterConfig
|
||||
from llama_stack.providers.remote.inference.vllm.vllm import (
|
||||
VLLMInferenceAdapter,
|
||||
_process_vllm_chat_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.vllm.vllm import VLLMInferenceAdapter
|
||||
|
||||
# These are unit test for the remote vllm provider
|
||||
# implementation. This should only contain tests which are specific to
|
||||
|
@ -56,37 +32,15 @@ from llama_stack.providers.remote.inference.vllm.vllm import (
|
|||
# -v -s --tb=short --disable-warnings
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def mock_openai_models_list():
|
||||
with patch("openai.resources.models.AsyncModels.list") as mock_list:
|
||||
yield mock_list
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
async def vllm_inference_adapter():
|
||||
config = VLLMInferenceAdapterConfig(url="http://mocked.localhost:12345")
|
||||
inference_adapter = VLLMInferenceAdapter(config)
|
||||
inference_adapter = VLLMInferenceAdapter(config=config)
|
||||
inference_adapter.model_store = AsyncMock()
|
||||
# Mock the __provider_spec__ attribute that would normally be set by the resolver
|
||||
inference_adapter.__provider_spec__ = MagicMock()
|
||||
inference_adapter.__provider_spec__.provider_type = "vllm-inference"
|
||||
inference_adapter.__provider_spec__.provider_data_validator = MagicMock()
|
||||
await inference_adapter.initialize()
|
||||
return inference_adapter
|
||||
|
||||
|
||||
async def test_register_model_checks_vllm(mock_openai_models_list, vllm_inference_adapter):
|
||||
async def mock_openai_models():
|
||||
yield OpenAIModel(id="foo", created=1, object="model", owned_by="test")
|
||||
|
||||
mock_openai_models_list.return_value = mock_openai_models()
|
||||
|
||||
foo_model = Model(identifier="foo", provider_resource_id="foo", provider_id="vllm-inference")
|
||||
|
||||
await vllm_inference_adapter.register_model(foo_model)
|
||||
mock_openai_models_list.assert_called()
|
||||
|
||||
|
||||
async def test_old_vllm_tool_choice(vllm_inference_adapter):
|
||||
"""
|
||||
Test that we set tool_choice to none when no tools are in use
|
||||
|
@ -115,403 +69,6 @@ async def test_old_vllm_tool_choice(vllm_inference_adapter):
|
|||
assert call_args.kwargs["tool_choice"] == ToolChoice.none.value
|
||||
|
||||
|
||||
async def test_tool_call_delta_empty_tool_call_buf():
|
||||
"""
|
||||
Test that we don't generate extra chunks when processing a
|
||||
tool call response that didn't call any tools. Previously we would
|
||||
emit chunks with spurious ToolCallParseStatus.succeeded or
|
||||
ToolCallParseStatus.failed when processing chunks that didn't
|
||||
actually make any tool calls.
|
||||
"""
|
||||
|
||||
async def mock_stream():
|
||||
delta = OpenAIChoiceDelta(content="", tool_calls=None)
|
||||
choices = [OpenAIChoiceChunk(delta=delta, finish_reason="stop", index=0)]
|
||||
mock_chunk = OpenAIChatCompletionChunk(
|
||||
id="chunk-1",
|
||||
created=1,
|
||||
model="foo",
|
||||
object="chat.completion.chunk",
|
||||
choices=choices,
|
||||
)
|
||||
for chunk in [mock_chunk]:
|
||||
yield chunk
|
||||
|
||||
chunks = [chunk async for chunk in _process_vllm_chat_completion_stream_response(mock_stream())]
|
||||
assert len(chunks) == 2
|
||||
assert chunks[0].event.event_type.value == "start"
|
||||
assert chunks[1].event.event_type.value == "complete"
|
||||
assert chunks[1].event.stop_reason == StopReason.end_of_turn
|
||||
|
||||
|
||||
async def test_tool_call_delta_streaming_arguments_dict():
|
||||
async def mock_stream():
|
||||
mock_chunk_1 = OpenAIChatCompletionChunk(
|
||||
id="chunk-1",
|
||||
created=1,
|
||||
model="foo",
|
||||
object="chat.completion.chunk",
|
||||
choices=[
|
||||
OpenAIChoiceChunk(
|
||||
delta=OpenAIChoiceDelta(
|
||||
content="",
|
||||
tool_calls=[
|
||||
OpenAIChoiceDeltaToolCall(
|
||||
id="tc_1",
|
||||
index=1,
|
||||
function=OpenAIChoiceDeltaToolCallFunction(
|
||||
name="power",
|
||||
arguments="",
|
||||
),
|
||||
)
|
||||
],
|
||||
),
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
)
|
||||
mock_chunk_2 = OpenAIChatCompletionChunk(
|
||||
id="chunk-2",
|
||||
created=1,
|
||||
model="foo",
|
||||
object="chat.completion.chunk",
|
||||
choices=[
|
||||
OpenAIChoiceChunk(
|
||||
delta=OpenAIChoiceDelta(
|
||||
content="",
|
||||
tool_calls=[
|
||||
OpenAIChoiceDeltaToolCall(
|
||||
id="tc_1",
|
||||
index=1,
|
||||
function=OpenAIChoiceDeltaToolCallFunction(
|
||||
name="power",
|
||||
arguments='{"number": 28, "power": 3}',
|
||||
),
|
||||
)
|
||||
],
|
||||
),
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
)
|
||||
mock_chunk_3 = OpenAIChatCompletionChunk(
|
||||
id="chunk-3",
|
||||
created=1,
|
||||
model="foo",
|
||||
object="chat.completion.chunk",
|
||||
choices=[
|
||||
OpenAIChoiceChunk(
|
||||
delta=OpenAIChoiceDelta(content="", tool_calls=None), finish_reason="tool_calls", index=0
|
||||
)
|
||||
],
|
||||
)
|
||||
for chunk in [mock_chunk_1, mock_chunk_2, mock_chunk_3]:
|
||||
yield chunk
|
||||
|
||||
chunks = [chunk async for chunk in _process_vllm_chat_completion_stream_response(mock_stream())]
|
||||
assert len(chunks) == 3
|
||||
assert chunks[0].event.event_type.value == "start"
|
||||
assert chunks[1].event.event_type.value == "progress"
|
||||
assert chunks[1].event.delta.type == "tool_call"
|
||||
assert chunks[1].event.delta.parse_status.value == "succeeded"
|
||||
assert chunks[1].event.delta.tool_call.arguments == '{"number": 28, "power": 3}'
|
||||
assert chunks[2].event.event_type.value == "complete"
|
||||
|
||||
|
||||
async def test_multiple_tool_calls():
|
||||
async def mock_stream():
|
||||
mock_chunk_1 = OpenAIChatCompletionChunk(
|
||||
id="chunk-1",
|
||||
created=1,
|
||||
model="foo",
|
||||
object="chat.completion.chunk",
|
||||
choices=[
|
||||
OpenAIChoiceChunk(
|
||||
delta=OpenAIChoiceDelta(
|
||||
content="",
|
||||
tool_calls=[
|
||||
OpenAIChoiceDeltaToolCall(
|
||||
id="",
|
||||
index=1,
|
||||
function=OpenAIChoiceDeltaToolCallFunction(
|
||||
name="power",
|
||||
arguments='{"number": 28, "power": 3}',
|
||||
),
|
||||
),
|
||||
],
|
||||
),
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
)
|
||||
mock_chunk_2 = OpenAIChatCompletionChunk(
|
||||
id="chunk-2",
|
||||
created=1,
|
||||
model="foo",
|
||||
object="chat.completion.chunk",
|
||||
choices=[
|
||||
OpenAIChoiceChunk(
|
||||
delta=OpenAIChoiceDelta(
|
||||
content="",
|
||||
tool_calls=[
|
||||
OpenAIChoiceDeltaToolCall(
|
||||
id="",
|
||||
index=2,
|
||||
function=OpenAIChoiceDeltaToolCallFunction(
|
||||
name="multiple",
|
||||
arguments='{"first_number": 4, "second_number": 7}',
|
||||
),
|
||||
),
|
||||
],
|
||||
),
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
)
|
||||
mock_chunk_3 = OpenAIChatCompletionChunk(
|
||||
id="chunk-3",
|
||||
created=1,
|
||||
model="foo",
|
||||
object="chat.completion.chunk",
|
||||
choices=[
|
||||
OpenAIChoiceChunk(
|
||||
delta=OpenAIChoiceDelta(content="", tool_calls=None), finish_reason="tool_calls", index=0
|
||||
)
|
||||
],
|
||||
)
|
||||
for chunk in [mock_chunk_1, mock_chunk_2, mock_chunk_3]:
|
||||
yield chunk
|
||||
|
||||
chunks = [chunk async for chunk in _process_vllm_chat_completion_stream_response(mock_stream())]
|
||||
assert len(chunks) == 4
|
||||
assert chunks[0].event.event_type.value == "start"
|
||||
assert chunks[1].event.event_type.value == "progress"
|
||||
assert chunks[1].event.delta.type == "tool_call"
|
||||
assert chunks[1].event.delta.parse_status.value == "succeeded"
|
||||
assert chunks[1].event.delta.tool_call.arguments == '{"number": 28, "power": 3}'
|
||||
assert chunks[2].event.event_type.value == "progress"
|
||||
assert chunks[2].event.delta.type == "tool_call"
|
||||
assert chunks[2].event.delta.parse_status.value == "succeeded"
|
||||
assert chunks[2].event.delta.tool_call.arguments == '{"first_number": 4, "second_number": 7}'
|
||||
assert chunks[3].event.event_type.value == "complete"
|
||||
|
||||
|
||||
async def test_process_vllm_chat_completion_stream_response_no_choices():
|
||||
"""
|
||||
Test that we don't error out when vLLM returns no choices for a
|
||||
completion request. This can happen when there's an error thrown
|
||||
in vLLM for example.
|
||||
"""
|
||||
|
||||
async def mock_stream():
|
||||
choices = []
|
||||
mock_chunk = OpenAIChatCompletionChunk(
|
||||
id="chunk-1",
|
||||
created=1,
|
||||
model="foo",
|
||||
object="chat.completion.chunk",
|
||||
choices=choices,
|
||||
)
|
||||
for chunk in [mock_chunk]:
|
||||
yield chunk
|
||||
|
||||
chunks = [chunk async for chunk in _process_vllm_chat_completion_stream_response(mock_stream())]
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].event.event_type.value == "start"
|
||||
|
||||
|
||||
async def test_get_params_empty_tools(vllm_inference_adapter):
|
||||
request = ChatCompletionRequest(
|
||||
tools=[],
|
||||
model="test_model",
|
||||
messages=[UserMessage(content="test")],
|
||||
)
|
||||
params = await vllm_inference_adapter._get_params(request)
|
||||
assert "tools" not in params
|
||||
|
||||
|
||||
async def test_process_vllm_chat_completion_stream_response_tool_call_args_last_chunk():
|
||||
"""
|
||||
Tests the edge case where the model returns the arguments for the tool call in the same chunk that
|
||||
contains the finish reason (i.e., the last one).
|
||||
We want to make sure the tool call is executed in this case, and the parameters are passed correctly.
|
||||
"""
|
||||
|
||||
mock_tool_name = "mock_tool"
|
||||
mock_tool_arguments = {"arg1": 0, "arg2": 100}
|
||||
mock_tool_arguments_str = json.dumps(mock_tool_arguments)
|
||||
|
||||
async def mock_stream():
|
||||
mock_chunks = [
|
||||
OpenAIChatCompletionChunk(
|
||||
id="chunk-1",
|
||||
created=1,
|
||||
model="foo",
|
||||
object="chat.completion.chunk",
|
||||
choices=[
|
||||
{
|
||||
"delta": {
|
||||
"content": None,
|
||||
"tool_calls": [
|
||||
{
|
||||
"index": 0,
|
||||
"id": "mock_id",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": mock_tool_name,
|
||||
"arguments": None,
|
||||
},
|
||||
}
|
||||
],
|
||||
},
|
||||
"finish_reason": None,
|
||||
"logprobs": None,
|
||||
"index": 0,
|
||||
}
|
||||
],
|
||||
),
|
||||
OpenAIChatCompletionChunk(
|
||||
id="chunk-1",
|
||||
created=1,
|
||||
model="foo",
|
||||
object="chat.completion.chunk",
|
||||
choices=[
|
||||
{
|
||||
"delta": {
|
||||
"content": None,
|
||||
"tool_calls": [
|
||||
{
|
||||
"index": 0,
|
||||
"id": None,
|
||||
"function": {
|
||||
"name": None,
|
||||
"arguments": mock_tool_arguments_str,
|
||||
},
|
||||
}
|
||||
],
|
||||
},
|
||||
"finish_reason": "tool_calls",
|
||||
"logprobs": None,
|
||||
"index": 0,
|
||||
}
|
||||
],
|
||||
),
|
||||
]
|
||||
for chunk in mock_chunks:
|
||||
yield chunk
|
||||
|
||||
chunks = [chunk async for chunk in _process_vllm_chat_completion_stream_response(mock_stream())]
|
||||
assert len(chunks) == 3
|
||||
assert chunks[-1].event.event_type == ChatCompletionResponseEventType.complete
|
||||
assert chunks[-2].event.delta.type == "tool_call"
|
||||
assert chunks[-2].event.delta.tool_call.tool_name == mock_tool_name
|
||||
assert chunks[-2].event.delta.tool_call.arguments == mock_tool_arguments_str
|
||||
|
||||
|
||||
async def test_process_vllm_chat_completion_stream_response_no_finish_reason():
|
||||
"""
|
||||
Tests the edge case where the model requests a tool call and stays idle without explicitly providing the
|
||||
finish reason.
|
||||
We want to make sure that this case is recognized and handled correctly, i.e., as a valid end of message.
|
||||
"""
|
||||
|
||||
mock_tool_name = "mock_tool"
|
||||
mock_tool_arguments = {"arg1": 0, "arg2": 100}
|
||||
mock_tool_arguments_str = json.dumps(mock_tool_arguments)
|
||||
|
||||
async def mock_stream():
|
||||
mock_chunks = [
|
||||
OpenAIChatCompletionChunk(
|
||||
id="chunk-1",
|
||||
created=1,
|
||||
model="foo",
|
||||
object="chat.completion.chunk",
|
||||
choices=[
|
||||
{
|
||||
"delta": {
|
||||
"content": None,
|
||||
"tool_calls": [
|
||||
{
|
||||
"index": 0,
|
||||
"id": "mock_id",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": mock_tool_name,
|
||||
"arguments": mock_tool_arguments_str,
|
||||
},
|
||||
}
|
||||
],
|
||||
},
|
||||
"finish_reason": None,
|
||||
"logprobs": None,
|
||||
"index": 0,
|
||||
}
|
||||
],
|
||||
),
|
||||
]
|
||||
for chunk in mock_chunks:
|
||||
yield chunk
|
||||
|
||||
chunks = [chunk async for chunk in _process_vllm_chat_completion_stream_response(mock_stream())]
|
||||
assert len(chunks) == 3
|
||||
assert chunks[-1].event.event_type == ChatCompletionResponseEventType.complete
|
||||
assert chunks[-2].event.delta.type == "tool_call"
|
||||
assert chunks[-2].event.delta.tool_call.tool_name == mock_tool_name
|
||||
assert chunks[-2].event.delta.tool_call.arguments == mock_tool_arguments_str
|
||||
|
||||
|
||||
async def test_process_vllm_chat_completion_stream_response_tool_without_args():
|
||||
"""
|
||||
Tests the edge case where no arguments are provided for the tool call.
|
||||
Tool calls with no arguments should be treated as regular tool calls, which was not the case until now.
|
||||
"""
|
||||
mock_tool_name = "mock_tool"
|
||||
|
||||
async def mock_stream():
|
||||
mock_chunks = [
|
||||
OpenAIChatCompletionChunk(
|
||||
id="chunk-1",
|
||||
created=1,
|
||||
model="foo",
|
||||
object="chat.completion.chunk",
|
||||
choices=[
|
||||
{
|
||||
"delta": {
|
||||
"content": None,
|
||||
"tool_calls": [
|
||||
{
|
||||
"index": 0,
|
||||
"id": "mock_id",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": mock_tool_name,
|
||||
"arguments": "",
|
||||
},
|
||||
}
|
||||
],
|
||||
},
|
||||
"finish_reason": None,
|
||||
"logprobs": None,
|
||||
"index": 0,
|
||||
}
|
||||
],
|
||||
),
|
||||
]
|
||||
for chunk in mock_chunks:
|
||||
yield chunk
|
||||
|
||||
chunks = [chunk async for chunk in _process_vllm_chat_completion_stream_response(mock_stream())]
|
||||
assert len(chunks) == 3
|
||||
assert chunks[-1].event.event_type == ChatCompletionResponseEventType.complete
|
||||
assert chunks[-2].event.delta.type == "tool_call"
|
||||
assert chunks[-2].event.delta.tool_call.tool_name == mock_tool_name
|
||||
assert chunks[-2].event.delta.tool_call.arguments == "{}"
|
||||
|
||||
|
||||
async def test_health_status_success(vllm_inference_adapter):
|
||||
"""
|
||||
Test the health method of VLLM InferenceAdapter when the connection is successful.
|
||||
|
@ -642,94 +199,30 @@ async def test_should_refresh_models():
|
|||
|
||||
# Test case 1: refresh_models is True, api_token is None
|
||||
config1 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token=None, refresh_models=True)
|
||||
adapter1 = VLLMInferenceAdapter(config1)
|
||||
adapter1 = VLLMInferenceAdapter(config=config1)
|
||||
result1 = await adapter1.should_refresh_models()
|
||||
assert result1 is True, "should_refresh_models should return True when refresh_models is True"
|
||||
|
||||
# Test case 2: refresh_models is True, api_token is empty string
|
||||
config2 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token="", refresh_models=True)
|
||||
adapter2 = VLLMInferenceAdapter(config2)
|
||||
adapter2 = VLLMInferenceAdapter(config=config2)
|
||||
result2 = await adapter2.should_refresh_models()
|
||||
assert result2 is True, "should_refresh_models should return True when refresh_models is True"
|
||||
|
||||
# Test case 3: refresh_models is True, api_token is "fake" (default)
|
||||
config3 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token="fake", refresh_models=True)
|
||||
adapter3 = VLLMInferenceAdapter(config3)
|
||||
adapter3 = VLLMInferenceAdapter(config=config3)
|
||||
result3 = await adapter3.should_refresh_models()
|
||||
assert result3 is True, "should_refresh_models should return True when refresh_models is True"
|
||||
|
||||
# Test case 4: refresh_models is True, api_token is real token
|
||||
config4 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token="real-token-123", refresh_models=True)
|
||||
adapter4 = VLLMInferenceAdapter(config4)
|
||||
adapter4 = VLLMInferenceAdapter(config=config4)
|
||||
result4 = await adapter4.should_refresh_models()
|
||||
assert result4 is True, "should_refresh_models should return True when refresh_models is True"
|
||||
|
||||
# Test case 5: refresh_models is False, api_token is real token
|
||||
config5 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token="real-token-456", refresh_models=False)
|
||||
adapter5 = VLLMInferenceAdapter(config5)
|
||||
adapter5 = VLLMInferenceAdapter(config=config5)
|
||||
result5 = await adapter5.should_refresh_models()
|
||||
assert result5 is False, "should_refresh_models should return False when refresh_models is False"
|
||||
|
||||
|
||||
async def test_provider_data_var_context_propagation(vllm_inference_adapter):
|
||||
"""
|
||||
Test that PROVIDER_DATA_VAR context is properly propagated through the vLLM inference adapter.
|
||||
This ensures that dynamic provider data (like API tokens) can be passed through context.
|
||||
Note: The base URL is always taken from config.url, not from provider data.
|
||||
"""
|
||||
# Mock the AsyncOpenAI class to capture provider data
|
||||
with (
|
||||
patch("llama_stack.providers.utils.inference.openai_mixin.AsyncOpenAI") as mock_openai_class,
|
||||
patch.object(vllm_inference_adapter, "get_request_provider_data") as mock_get_provider_data,
|
||||
):
|
||||
mock_client = AsyncMock()
|
||||
mock_client.chat.completions.create = AsyncMock()
|
||||
mock_openai_class.return_value = mock_client
|
||||
|
||||
# Mock provider data to return test data
|
||||
mock_provider_data = MagicMock()
|
||||
mock_provider_data.vllm_api_token = "test-token-123"
|
||||
mock_provider_data.vllm_url = "http://test-server:8000/v1"
|
||||
mock_get_provider_data.return_value = mock_provider_data
|
||||
|
||||
# Mock the model
|
||||
mock_model = Model(identifier="test-model", provider_resource_id="test-model", provider_id="vllm-inference")
|
||||
vllm_inference_adapter.model_store.get_model.return_value = mock_model
|
||||
|
||||
try:
|
||||
# Execute chat completion
|
||||
await vllm_inference_adapter.openai_chat_completion(
|
||||
model="test-model",
|
||||
messages=[UserMessage(content="Hello")],
|
||||
stream=False,
|
||||
)
|
||||
|
||||
# Verify that ALL client calls were made with the correct parameters
|
||||
calls = mock_openai_class.call_args_list
|
||||
incorrect_calls = []
|
||||
|
||||
for i, call in enumerate(calls):
|
||||
api_key = call[1]["api_key"]
|
||||
base_url = call[1]["base_url"]
|
||||
|
||||
if api_key != "test-token-123" or base_url != "http://mocked.localhost:12345":
|
||||
incorrect_calls.append({"call_index": i, "api_key": api_key, "base_url": base_url})
|
||||
|
||||
if incorrect_calls:
|
||||
error_msg = (
|
||||
f"Found {len(incorrect_calls)} calls with incorrect parameters out of {len(calls)} total calls:\n"
|
||||
)
|
||||
for incorrect_call in incorrect_calls:
|
||||
error_msg += f" Call {incorrect_call['call_index']}: api_key='{incorrect_call['api_key']}', base_url='{incorrect_call['base_url']}'\n"
|
||||
error_msg += "Expected: api_key='test-token-123', base_url='http://mocked.localhost:12345'"
|
||||
raise AssertionError(error_msg)
|
||||
|
||||
# Ensure at least one call was made
|
||||
assert len(calls) >= 1, "No AsyncOpenAI client calls were made"
|
||||
|
||||
# Verify that chat completion was called
|
||||
mock_client.chat.completions.create.assert_called_once()
|
||||
|
||||
finally:
|
||||
# Clean up context
|
||||
pass
|
||||
|
|
|
@ -13,6 +13,7 @@ from pydantic import BaseModel, Field
|
|||
from llama_stack.apis.inference import Model, OpenAIUserMessageParam
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.core.request_headers import request_provider_data_context
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
|
||||
|
@ -29,7 +30,7 @@ class OpenAIMixinImpl(OpenAIMixin):
|
|||
class OpenAIMixinWithEmbeddingsImpl(OpenAIMixinImpl):
|
||||
"""Test implementation with embedding model metadata"""
|
||||
|
||||
embedding_model_metadata = {
|
||||
embedding_model_metadata: dict[str, dict[str, int]] = {
|
||||
"text-embedding-3-small": {"embedding_dimension": 1536, "context_length": 8192},
|
||||
"text-embedding-ada-002": {"embedding_dimension": 1536, "context_length": 8192},
|
||||
}
|
||||
|
@ -38,7 +39,8 @@ class OpenAIMixinWithEmbeddingsImpl(OpenAIMixinImpl):
|
|||
@pytest.fixture
|
||||
def mixin():
|
||||
"""Create a test instance of OpenAIMixin with mocked model_store"""
|
||||
mixin_instance = OpenAIMixinImpl()
|
||||
config = RemoteInferenceProviderConfig()
|
||||
mixin_instance = OpenAIMixinImpl(config=config)
|
||||
|
||||
# just enough to satisfy _get_provider_model_id calls
|
||||
mock_model_store = MagicMock()
|
||||
|
@ -53,7 +55,8 @@ def mixin():
|
|||
@pytest.fixture
|
||||
def mixin_with_embeddings():
|
||||
"""Create a test instance of OpenAIMixin with embedding model metadata"""
|
||||
return OpenAIMixinWithEmbeddingsImpl()
|
||||
config = RemoteInferenceProviderConfig()
|
||||
return OpenAIMixinWithEmbeddingsImpl(config=config)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -504,7 +507,8 @@ class TestOpenAIMixinProviderDataApiKey:
|
|||
@pytest.fixture
|
||||
def mixin_with_provider_data_field(self):
|
||||
"""Mixin instance with provider_data_api_key_field set"""
|
||||
mixin_instance = OpenAIMixinWithProviderData()
|
||||
config = RemoteInferenceProviderConfig()
|
||||
mixin_instance = OpenAIMixinWithProviderData(config=config)
|
||||
|
||||
# Mock provider_spec for provider data validation
|
||||
mock_provider_spec = MagicMock()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue