mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
[Evals API][10/n] API updates for EvalTaskDef + new test migration (#379)
* wip * scoring fn api * eval api * eval task * evaluate api update * pre commit * unwrap context -> config * config field doc * typo * naming fix * separate benchmark / app eval * api name * rename * wip tests * wip * datasetio test * delete unused * fixture * scoring resolve * fix scoring register * scoring test pass * score batch * scoring fix * fix eval * test eval works * remove type ignore * api refactor * add default task_eval_id for routing * add eval_id for jobs * remove type ignore * only keep 1 run_eval * fix optional * register task required * register task required * delete old tests * delete old tests * fixture return impl
This commit is contained in:
parent
8350f2df4c
commit
6192bf43a4
32 changed files with 916 additions and 389 deletions
|
@ -14,6 +14,7 @@ from llama_stack.apis.scoring_functions import * # noqa: F403
|
||||||
from llama_stack.apis.agents import AgentConfig
|
from llama_stack.apis.agents import AgentConfig
|
||||||
from llama_stack.apis.common.job_types import Job, JobStatus
|
from llama_stack.apis.common.job_types import Job, JobStatus
|
||||||
from llama_stack.apis.scoring import * # noqa: F403
|
from llama_stack.apis.scoring import * # noqa: F403
|
||||||
|
from llama_stack.apis.eval_tasks import * # noqa: F403
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
|
@ -35,36 +36,57 @@ EvalCandidate = Annotated[
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@json_schema_type
|
||||||
|
class BenchmarkEvalTaskConfig(BaseModel):
|
||||||
|
type: Literal["benchmark"] = "benchmark"
|
||||||
|
eval_candidate: EvalCandidate
|
||||||
|
|
||||||
|
|
||||||
|
@json_schema_type
|
||||||
|
class AppEvalTaskConfig(BaseModel):
|
||||||
|
type: Literal["app"] = "app"
|
||||||
|
eval_candidate: EvalCandidate
|
||||||
|
scoring_params: Dict[str, ScoringFnParams] = Field(
|
||||||
|
description="Map between scoring function id and parameters for each scoring function you want to run",
|
||||||
|
default_factory=dict,
|
||||||
|
)
|
||||||
|
# we could optinally add any specific dataset config here
|
||||||
|
|
||||||
|
|
||||||
|
EvalTaskConfig = Annotated[
|
||||||
|
Union[BenchmarkEvalTaskConfig, AppEvalTaskConfig], Field(discriminator="type")
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class EvaluateResponse(BaseModel):
|
class EvaluateResponse(BaseModel):
|
||||||
generations: List[Dict[str, Any]]
|
generations: List[Dict[str, Any]]
|
||||||
|
|
||||||
# each key in the dict is a scoring function name
|
# each key in the dict is a scoring function name
|
||||||
scores: Dict[str, ScoringResult]
|
scores: Dict[str, ScoringResult]
|
||||||
|
|
||||||
|
|
||||||
class Eval(Protocol):
|
class Eval(Protocol):
|
||||||
@webmethod(route="/eval/evaluate_batch", method="POST")
|
@webmethod(route="/eval/run_eval", method="POST")
|
||||||
async def evaluate_batch(
|
async def run_eval(
|
||||||
self,
|
self,
|
||||||
dataset_id: str,
|
task_id: str,
|
||||||
candidate: EvalCandidate,
|
task_config: EvalTaskConfig,
|
||||||
scoring_functions: List[str],
|
|
||||||
) -> Job: ...
|
) -> Job: ...
|
||||||
|
|
||||||
@webmethod(route="/eval/evaluate", method="POST")
|
@webmethod(route="/eval/evaluate_rows", method="POST")
|
||||||
async def evaluate(
|
async def evaluate_rows(
|
||||||
self,
|
self,
|
||||||
|
task_id: str,
|
||||||
input_rows: List[Dict[str, Any]],
|
input_rows: List[Dict[str, Any]],
|
||||||
candidate: EvalCandidate,
|
|
||||||
scoring_functions: List[str],
|
scoring_functions: List[str],
|
||||||
|
task_config: EvalTaskConfig,
|
||||||
) -> EvaluateResponse: ...
|
) -> EvaluateResponse: ...
|
||||||
|
|
||||||
@webmethod(route="/eval/job/status", method="GET")
|
@webmethod(route="/eval/job/status", method="GET")
|
||||||
async def job_status(self, job_id: str) -> Optional[JobStatus]: ...
|
async def job_status(self, task_id: str, job_id: str) -> Optional[JobStatus]: ...
|
||||||
|
|
||||||
@webmethod(route="/eval/job/cancel", method="POST")
|
@webmethod(route="/eval/job/cancel", method="POST")
|
||||||
async def job_cancel(self, job_id: str) -> None: ...
|
async def job_cancel(self, task_id: str, job_id: str) -> None: ...
|
||||||
|
|
||||||
@webmethod(route="/eval/job/result", method="GET")
|
@webmethod(route="/eval/job/result", method="GET")
|
||||||
async def job_result(self, job_id: str) -> EvaluateResponse: ...
|
async def job_result(self, task_id: str, job_id: str) -> EvaluateResponse: ...
|
||||||
|
|
7
llama_stack/apis/eval_tasks/__init__.py
Normal file
7
llama_stack/apis/eval_tasks/__init__.py
Normal file
|
@ -0,0 +1,7 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from .eval_tasks import * # noqa: F401 F403
|
43
llama_stack/apis/eval_tasks/eval_tasks.py
Normal file
43
llama_stack/apis/eval_tasks/eval_tasks.py
Normal file
|
@ -0,0 +1,43 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
from typing import Any, Dict, List, Literal, Optional, Protocol, runtime_checkable
|
||||||
|
|
||||||
|
from llama_models.schema_utils import json_schema_type, webmethod
|
||||||
|
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
|
|
||||||
|
@json_schema_type
|
||||||
|
class EvalTaskDef(BaseModel):
|
||||||
|
identifier: str
|
||||||
|
dataset_id: str
|
||||||
|
scoring_functions: List[str]
|
||||||
|
metadata: Dict[str, Any] = Field(
|
||||||
|
default_factory=dict,
|
||||||
|
description="Metadata for this evaluation task",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@json_schema_type
|
||||||
|
class EvalTaskDefWithProvider(EvalTaskDef):
|
||||||
|
type: Literal["eval_task"] = "eval_task"
|
||||||
|
provider_id: str = Field(
|
||||||
|
description="ID of the provider which serves this dataset",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@runtime_checkable
|
||||||
|
class EvalTasks(Protocol):
|
||||||
|
@webmethod(route="/eval_tasks/list", method="GET")
|
||||||
|
async def list_eval_tasks(self) -> List[EvalTaskDefWithProvider]: ...
|
||||||
|
|
||||||
|
@webmethod(route="/eval_tasks/get", method="GET")
|
||||||
|
async def get_eval_task(self, name: str) -> Optional[EvalTaskDefWithProvider]: ...
|
||||||
|
|
||||||
|
@webmethod(route="/eval_tasks/register", method="POST")
|
||||||
|
async def register_eval_task(
|
||||||
|
self, eval_task_def: EvalTaskDefWithProvider
|
||||||
|
) -> None: ...
|
|
@ -48,11 +48,13 @@ class Scoring(Protocol):
|
||||||
async def score_batch(
|
async def score_batch(
|
||||||
self,
|
self,
|
||||||
dataset_id: str,
|
dataset_id: str,
|
||||||
scoring_functions: List[str],
|
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
||||||
save_results_dataset: bool = False,
|
save_results_dataset: bool = False,
|
||||||
) -> ScoreBatchResponse: ...
|
) -> ScoreBatchResponse: ...
|
||||||
|
|
||||||
@webmethod(route="/scoring/score")
|
@webmethod(route="/scoring/score")
|
||||||
async def score(
|
async def score(
|
||||||
self, input_rows: List[Dict[str, Any]], scoring_functions: List[str]
|
self,
|
||||||
|
input_rows: List[Dict[str, Any]],
|
||||||
|
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
||||||
) -> ScoreResponse: ...
|
) -> ScoreResponse: ...
|
||||||
|
|
|
@ -4,34 +4,66 @@
|
||||||
# This source code is licensed under the terms described in the LICENSE file in
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
from typing import Any, Dict, List, Literal, Optional, Protocol, runtime_checkable
|
from enum import Enum
|
||||||
|
from typing import (
|
||||||
|
Any,
|
||||||
|
Dict,
|
||||||
|
List,
|
||||||
|
Literal,
|
||||||
|
Optional,
|
||||||
|
Protocol,
|
||||||
|
runtime_checkable,
|
||||||
|
Union,
|
||||||
|
)
|
||||||
|
|
||||||
from llama_models.schema_utils import json_schema_type, webmethod
|
from llama_models.schema_utils import json_schema_type, webmethod
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
|
from typing_extensions import Annotated
|
||||||
|
|
||||||
from llama_stack.apis.common.type_system import ParamType
|
from llama_stack.apis.common.type_system import ParamType
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
|
||||||
class Parameter(BaseModel):
|
|
||||||
name: str
|
|
||||||
type: ParamType
|
|
||||||
description: Optional[str] = None
|
|
||||||
|
|
||||||
|
|
||||||
# Perhaps more structure can be imposed on these functions. Maybe they could be associated
|
# Perhaps more structure can be imposed on these functions. Maybe they could be associated
|
||||||
# with standard metrics so they can be rolled up?
|
# with standard metrics so they can be rolled up?
|
||||||
|
@json_schema_type
|
||||||
|
class ScoringConfigType(Enum):
|
||||||
|
llm_as_judge = "llm_as_judge"
|
||||||
|
regex_parser = "regex_parser"
|
||||||
|
|
||||||
|
|
||||||
class LLMAsJudgeContext(BaseModel):
|
@json_schema_type
|
||||||
|
class LLMAsJudgeScoringFnParams(BaseModel):
|
||||||
|
type: Literal[ScoringConfigType.llm_as_judge.value] = (
|
||||||
|
ScoringConfigType.llm_as_judge.value
|
||||||
|
)
|
||||||
judge_model: str
|
judge_model: str
|
||||||
prompt_template: Optional[str] = None
|
prompt_template: Optional[str] = None
|
||||||
judge_score_regex: Optional[List[str]] = Field(
|
judge_score_regexes: Optional[List[str]] = Field(
|
||||||
description="Regex to extract the score from the judge response",
|
description="Regexes to extract the answer from generated response",
|
||||||
default=None,
|
default_factory=list,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@json_schema_type
|
||||||
|
class RegexParserScoringFnParams(BaseModel):
|
||||||
|
type: Literal[ScoringConfigType.regex_parser.value] = (
|
||||||
|
ScoringConfigType.regex_parser.value
|
||||||
|
)
|
||||||
|
parsing_regexes: Optional[List[str]] = Field(
|
||||||
|
description="Regex to extract the answer from generated response",
|
||||||
|
default_factory=list,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
ScoringFnParams = Annotated[
|
||||||
|
Union[
|
||||||
|
LLMAsJudgeScoringFnParams,
|
||||||
|
RegexParserScoringFnParams,
|
||||||
|
],
|
||||||
|
Field(discriminator="type"),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class ScoringFnDef(BaseModel):
|
class ScoringFnDef(BaseModel):
|
||||||
identifier: str
|
identifier: str
|
||||||
|
@ -40,14 +72,13 @@ class ScoringFnDef(BaseModel):
|
||||||
default_factory=dict,
|
default_factory=dict,
|
||||||
description="Any additional metadata for this definition",
|
description="Any additional metadata for this definition",
|
||||||
)
|
)
|
||||||
parameters: List[Parameter] = Field(
|
|
||||||
description="List of parameters for the deterministic function",
|
|
||||||
default_factory=list,
|
|
||||||
)
|
|
||||||
return_type: ParamType = Field(
|
return_type: ParamType = Field(
|
||||||
description="The return type of the deterministic function",
|
description="The return type of the deterministic function",
|
||||||
)
|
)
|
||||||
context: Optional[LLMAsJudgeContext] = None
|
params: Optional[ScoringFnParams] = Field(
|
||||||
|
description="The parameters for the scoring function for benchmark eval, these can be overridden for app eval",
|
||||||
|
default=None,
|
||||||
|
)
|
||||||
# We can optionally add information here to support packaging of code, etc.
|
# We can optionally add information here to support packaging of code, etc.
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -43,6 +43,10 @@ def builtin_automatically_routed_apis() -> List[AutoRoutedApiInfo]:
|
||||||
routing_table_api=Api.scoring_functions,
|
routing_table_api=Api.scoring_functions,
|
||||||
router_api=Api.scoring,
|
router_api=Api.scoring,
|
||||||
),
|
),
|
||||||
|
AutoRoutedApiInfo(
|
||||||
|
routing_table_api=Api.eval_tasks,
|
||||||
|
router_api=Api.eval,
|
||||||
|
),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -17,6 +17,7 @@ from llama_stack.apis.agents import Agents
|
||||||
from llama_stack.apis.datasetio import DatasetIO
|
from llama_stack.apis.datasetio import DatasetIO
|
||||||
from llama_stack.apis.datasets import Datasets
|
from llama_stack.apis.datasets import Datasets
|
||||||
from llama_stack.apis.eval import Eval
|
from llama_stack.apis.eval import Eval
|
||||||
|
from llama_stack.apis.eval_tasks import EvalTasks
|
||||||
from llama_stack.apis.inference import Inference
|
from llama_stack.apis.inference import Inference
|
||||||
from llama_stack.apis.inspect import Inspect
|
from llama_stack.apis.inspect import Inspect
|
||||||
from llama_stack.apis.memory import Memory
|
from llama_stack.apis.memory import Memory
|
||||||
|
@ -48,6 +49,7 @@ def api_protocol_map() -> Dict[Api, Any]:
|
||||||
Api.scoring: Scoring,
|
Api.scoring: Scoring,
|
||||||
Api.scoring_functions: ScoringFunctions,
|
Api.scoring_functions: ScoringFunctions,
|
||||||
Api.eval: Eval,
|
Api.eval: Eval,
|
||||||
|
Api.eval_tasks: EvalTasks,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -58,6 +60,7 @@ def additional_protocols_map() -> Dict[Api, Any]:
|
||||||
Api.safety: (ShieldsProtocolPrivate, Shields),
|
Api.safety: (ShieldsProtocolPrivate, Shields),
|
||||||
Api.datasetio: (DatasetsProtocolPrivate, Datasets),
|
Api.datasetio: (DatasetsProtocolPrivate, Datasets),
|
||||||
Api.scoring: (ScoringFunctionsProtocolPrivate, ScoringFunctions),
|
Api.scoring: (ScoringFunctionsProtocolPrivate, ScoringFunctions),
|
||||||
|
Api.eval_tasks: (EvalTasksProtocolPrivate, EvalTasks),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -12,6 +12,7 @@ from llama_stack.distribution.store import DistributionRegistry
|
||||||
|
|
||||||
from .routing_tables import (
|
from .routing_tables import (
|
||||||
DatasetsRoutingTable,
|
DatasetsRoutingTable,
|
||||||
|
EvalTasksRoutingTable,
|
||||||
MemoryBanksRoutingTable,
|
MemoryBanksRoutingTable,
|
||||||
ModelsRoutingTable,
|
ModelsRoutingTable,
|
||||||
ScoringFunctionsRoutingTable,
|
ScoringFunctionsRoutingTable,
|
||||||
|
@ -31,6 +32,7 @@ async def get_routing_table_impl(
|
||||||
"shields": ShieldsRoutingTable,
|
"shields": ShieldsRoutingTable,
|
||||||
"datasets": DatasetsRoutingTable,
|
"datasets": DatasetsRoutingTable,
|
||||||
"scoring_functions": ScoringFunctionsRoutingTable,
|
"scoring_functions": ScoringFunctionsRoutingTable,
|
||||||
|
"eval_tasks": EvalTasksRoutingTable,
|
||||||
}
|
}
|
||||||
|
|
||||||
if api.value not in api_to_tables:
|
if api.value not in api_to_tables:
|
||||||
|
@ -44,6 +46,7 @@ async def get_routing_table_impl(
|
||||||
async def get_auto_router_impl(api: Api, routing_table: RoutingTable, _deps) -> Any:
|
async def get_auto_router_impl(api: Api, routing_table: RoutingTable, _deps) -> Any:
|
||||||
from .routers import (
|
from .routers import (
|
||||||
DatasetIORouter,
|
DatasetIORouter,
|
||||||
|
EvalRouter,
|
||||||
InferenceRouter,
|
InferenceRouter,
|
||||||
MemoryRouter,
|
MemoryRouter,
|
||||||
SafetyRouter,
|
SafetyRouter,
|
||||||
|
@ -56,6 +59,7 @@ async def get_auto_router_impl(api: Api, routing_table: RoutingTable, _deps) ->
|
||||||
"safety": SafetyRouter,
|
"safety": SafetyRouter,
|
||||||
"datasetio": DatasetIORouter,
|
"datasetio": DatasetIORouter,
|
||||||
"scoring": ScoringRouter,
|
"scoring": ScoringRouter,
|
||||||
|
"eval": EvalRouter,
|
||||||
}
|
}
|
||||||
if api.value not in api_to_routers:
|
if api.value not in api_to_routers:
|
||||||
raise ValueError(f"API {api.value} not found in router map")
|
raise ValueError(f"API {api.value} not found in router map")
|
||||||
|
|
|
@ -14,6 +14,7 @@ from llama_stack.apis.inference import * # noqa: F403
|
||||||
from llama_stack.apis.safety import * # noqa: F403
|
from llama_stack.apis.safety import * # noqa: F403
|
||||||
from llama_stack.apis.datasetio import * # noqa: F403
|
from llama_stack.apis.datasetio import * # noqa: F403
|
||||||
from llama_stack.apis.scoring import * # noqa: F403
|
from llama_stack.apis.scoring import * # noqa: F403
|
||||||
|
from llama_stack.apis.eval import * # noqa: F403
|
||||||
|
|
||||||
|
|
||||||
class MemoryRouter(Memory):
|
class MemoryRouter(Memory):
|
||||||
|
@ -211,16 +212,16 @@ class ScoringRouter(Scoring):
|
||||||
async def score_batch(
|
async def score_batch(
|
||||||
self,
|
self,
|
||||||
dataset_id: str,
|
dataset_id: str,
|
||||||
scoring_functions: List[str],
|
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
||||||
save_results_dataset: bool = False,
|
save_results_dataset: bool = False,
|
||||||
) -> ScoreBatchResponse:
|
) -> ScoreBatchResponse:
|
||||||
res = {}
|
res = {}
|
||||||
for fn_identifier in scoring_functions:
|
for fn_identifier in scoring_functions.keys():
|
||||||
score_response = await self.routing_table.get_provider_impl(
|
score_response = await self.routing_table.get_provider_impl(
|
||||||
fn_identifier
|
fn_identifier
|
||||||
).score_batch(
|
).score_batch(
|
||||||
dataset_id=dataset_id,
|
dataset_id=dataset_id,
|
||||||
scoring_functions=[fn_identifier],
|
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
|
||||||
)
|
)
|
||||||
res.update(score_response.results)
|
res.update(score_response.results)
|
||||||
|
|
||||||
|
@ -232,17 +233,87 @@ class ScoringRouter(Scoring):
|
||||||
)
|
)
|
||||||
|
|
||||||
async def score(
|
async def score(
|
||||||
self, input_rows: List[Dict[str, Any]], scoring_functions: List[str]
|
self,
|
||||||
|
input_rows: List[Dict[str, Any]],
|
||||||
|
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
||||||
) -> ScoreResponse:
|
) -> ScoreResponse:
|
||||||
res = {}
|
res = {}
|
||||||
# look up and map each scoring function to its provider impl
|
# look up and map each scoring function to its provider impl
|
||||||
for fn_identifier in scoring_functions:
|
for fn_identifier in scoring_functions.keys():
|
||||||
score_response = await self.routing_table.get_provider_impl(
|
score_response = await self.routing_table.get_provider_impl(
|
||||||
fn_identifier
|
fn_identifier
|
||||||
).score(
|
).score(
|
||||||
input_rows=input_rows,
|
input_rows=input_rows,
|
||||||
scoring_functions=[fn_identifier],
|
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
|
||||||
)
|
)
|
||||||
res.update(score_response.results)
|
res.update(score_response.results)
|
||||||
|
|
||||||
return ScoreResponse(results=res)
|
return ScoreResponse(results=res)
|
||||||
|
|
||||||
|
|
||||||
|
class EvalRouter(Eval):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
routing_table: RoutingTable,
|
||||||
|
) -> None:
|
||||||
|
self.routing_table = routing_table
|
||||||
|
|
||||||
|
async def initialize(self) -> None:
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def shutdown(self) -> None:
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def run_eval(
|
||||||
|
self,
|
||||||
|
task_id: str,
|
||||||
|
task_config: AppEvalTaskConfig,
|
||||||
|
) -> Job:
|
||||||
|
return await self.routing_table.get_provider_impl(task_id).run_eval(
|
||||||
|
task_id=task_id,
|
||||||
|
task_config=task_config,
|
||||||
|
)
|
||||||
|
|
||||||
|
@webmethod(route="/eval/evaluate_rows", method="POST")
|
||||||
|
async def evaluate_rows(
|
||||||
|
self,
|
||||||
|
task_id: str,
|
||||||
|
input_rows: List[Dict[str, Any]],
|
||||||
|
scoring_functions: List[str],
|
||||||
|
task_config: EvalTaskConfig,
|
||||||
|
) -> EvaluateResponse:
|
||||||
|
return await self.routing_table.get_provider_impl(task_id).evaluate_rows(
|
||||||
|
task_id=task_id,
|
||||||
|
input_rows=input_rows,
|
||||||
|
scoring_functions=scoring_functions,
|
||||||
|
task_config=task_config,
|
||||||
|
)
|
||||||
|
|
||||||
|
async def job_status(
|
||||||
|
self,
|
||||||
|
task_id: str,
|
||||||
|
job_id: str,
|
||||||
|
) -> Optional[JobStatus]:
|
||||||
|
return await self.routing_table.get_provider_impl(task_id).job_status(
|
||||||
|
task_id, job_id
|
||||||
|
)
|
||||||
|
|
||||||
|
async def job_cancel(
|
||||||
|
self,
|
||||||
|
task_id: str,
|
||||||
|
job_id: str,
|
||||||
|
) -> None:
|
||||||
|
await self.routing_table.get_provider_impl(task_id).job_cancel(
|
||||||
|
task_id,
|
||||||
|
job_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
async def job_result(
|
||||||
|
self,
|
||||||
|
task_id: str,
|
||||||
|
job_id: str,
|
||||||
|
) -> EvaluateResponse:
|
||||||
|
return await self.routing_table.get_provider_impl(task_id).job_result(
|
||||||
|
task_id,
|
||||||
|
job_id,
|
||||||
|
)
|
||||||
|
|
|
@ -12,6 +12,8 @@ from llama_stack.apis.models import * # noqa: F403
|
||||||
from llama_stack.apis.shields import * # noqa: F403
|
from llama_stack.apis.shields import * # noqa: F403
|
||||||
from llama_stack.apis.memory_banks import * # noqa: F403
|
from llama_stack.apis.memory_banks import * # noqa: F403
|
||||||
from llama_stack.apis.datasets import * # noqa: F403
|
from llama_stack.apis.datasets import * # noqa: F403
|
||||||
|
from llama_stack.apis.eval_tasks import * # noqa: F403
|
||||||
|
|
||||||
|
|
||||||
from llama_stack.distribution.store import DistributionRegistry
|
from llama_stack.distribution.store import DistributionRegistry
|
||||||
from llama_stack.distribution.datatypes import * # noqa: F403
|
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||||
|
@ -40,6 +42,8 @@ async def register_object_with_provider(obj: RoutableObject, p: Any) -> None:
|
||||||
await p.register_dataset(obj)
|
await p.register_dataset(obj)
|
||||||
elif api == Api.scoring:
|
elif api == Api.scoring:
|
||||||
await p.register_scoring_function(obj)
|
await p.register_scoring_function(obj)
|
||||||
|
elif api == Api.eval:
|
||||||
|
await p.register_eval_task(obj)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown API {api} for registering object with provider")
|
raise ValueError(f"Unknown API {api} for registering object with provider")
|
||||||
|
|
||||||
|
@ -103,6 +107,11 @@ class CommonRoutingTableImpl(RoutingTable):
|
||||||
scoring_functions = await p.list_scoring_functions()
|
scoring_functions = await p.list_scoring_functions()
|
||||||
await add_objects(scoring_functions, pid, ScoringFnDefWithProvider)
|
await add_objects(scoring_functions, pid, ScoringFnDefWithProvider)
|
||||||
|
|
||||||
|
elif api == Api.eval:
|
||||||
|
p.eval_task_store = self
|
||||||
|
eval_tasks = await p.list_eval_tasks()
|
||||||
|
await add_objects(eval_tasks, pid, EvalTaskDefWithProvider)
|
||||||
|
|
||||||
async def shutdown(self) -> None:
|
async def shutdown(self) -> None:
|
||||||
for p in self.impls_by_provider_id.values():
|
for p in self.impls_by_provider_id.values():
|
||||||
await p.shutdown()
|
await p.shutdown()
|
||||||
|
@ -121,6 +130,8 @@ class CommonRoutingTableImpl(RoutingTable):
|
||||||
return ("DatasetIO", "dataset")
|
return ("DatasetIO", "dataset")
|
||||||
elif isinstance(self, ScoringFunctionsRoutingTable):
|
elif isinstance(self, ScoringFunctionsRoutingTable):
|
||||||
return ("Scoring", "scoring_function")
|
return ("Scoring", "scoring_function")
|
||||||
|
elif isinstance(self, EvalTasksRoutingTable):
|
||||||
|
return ("Eval", "eval_task")
|
||||||
else:
|
else:
|
||||||
raise ValueError("Unknown routing table type")
|
raise ValueError("Unknown routing table type")
|
||||||
|
|
||||||
|
@ -246,9 +257,9 @@ class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
|
||||||
await self.register_object(dataset_def)
|
await self.register_object(dataset_def)
|
||||||
|
|
||||||
|
|
||||||
class ScoringFunctionsRoutingTable(CommonRoutingTableImpl, Scoring):
|
class ScoringFunctionsRoutingTable(CommonRoutingTableImpl, ScoringFunctions):
|
||||||
async def list_scoring_functions(self) -> List[ScoringFnDefWithProvider]:
|
async def list_scoring_functions(self) -> List[ScoringFnDefWithProvider]:
|
||||||
return await self.get_all_with_type("scoring_function")
|
return await self.get_all_with_type("scoring_fn")
|
||||||
|
|
||||||
async def get_scoring_function(
|
async def get_scoring_function(
|
||||||
self, name: str
|
self, name: str
|
||||||
|
@ -259,3 +270,14 @@ class ScoringFunctionsRoutingTable(CommonRoutingTableImpl, Scoring):
|
||||||
self, function_def: ScoringFnDefWithProvider
|
self, function_def: ScoringFnDefWithProvider
|
||||||
) -> None:
|
) -> None:
|
||||||
await self.register_object(function_def)
|
await self.register_object(function_def)
|
||||||
|
|
||||||
|
|
||||||
|
class EvalTasksRoutingTable(CommonRoutingTableImpl, EvalTasks):
|
||||||
|
async def list_eval_tasks(self) -> List[ScoringFnDefWithProvider]:
|
||||||
|
return await self.get_all_with_type("eval_task")
|
||||||
|
|
||||||
|
async def get_eval_task(self, name: str) -> Optional[EvalTaskDefWithProvider]:
|
||||||
|
return await self.get_object_by_identifier(name)
|
||||||
|
|
||||||
|
async def register_eval_task(self, eval_task_def: EvalTaskDefWithProvider) -> None:
|
||||||
|
await self.register_object(eval_task_def)
|
||||||
|
|
|
@ -12,6 +12,7 @@ from llama_models.schema_utils import json_schema_type
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
from llama_stack.apis.datasets import DatasetDef
|
from llama_stack.apis.datasets import DatasetDef
|
||||||
|
from llama_stack.apis.eval_tasks import EvalTaskDef
|
||||||
from llama_stack.apis.memory_banks import MemoryBankDef
|
from llama_stack.apis.memory_banks import MemoryBankDef
|
||||||
from llama_stack.apis.models import ModelDef
|
from llama_stack.apis.models import ModelDef
|
||||||
from llama_stack.apis.scoring_functions import ScoringFnDef
|
from llama_stack.apis.scoring_functions import ScoringFnDef
|
||||||
|
@ -35,6 +36,7 @@ class Api(Enum):
|
||||||
memory_banks = "memory_banks"
|
memory_banks = "memory_banks"
|
||||||
datasets = "datasets"
|
datasets = "datasets"
|
||||||
scoring_functions = "scoring_functions"
|
scoring_functions = "scoring_functions"
|
||||||
|
eval_tasks = "eval_tasks"
|
||||||
|
|
||||||
# built-in API
|
# built-in API
|
||||||
inspect = "inspect"
|
inspect = "inspect"
|
||||||
|
@ -70,6 +72,12 @@ class ScoringFunctionsProtocolPrivate(Protocol):
|
||||||
async def register_scoring_function(self, function_def: ScoringFnDef) -> None: ...
|
async def register_scoring_function(self, function_def: ScoringFnDef) -> None: ...
|
||||||
|
|
||||||
|
|
||||||
|
class EvalTasksProtocolPrivate(Protocol):
|
||||||
|
async def list_eval_tasks(self) -> List[EvalTaskDef]: ...
|
||||||
|
|
||||||
|
async def register_eval_task(self, eval_task_def: EvalTaskDef) -> None: ...
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class ProviderSpec(BaseModel):
|
class ProviderSpec(BaseModel):
|
||||||
api: Api
|
api: Api
|
||||||
|
|
|
@ -6,13 +6,15 @@
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||||
|
|
||||||
|
from .....apis.common.job_types import Job
|
||||||
|
from .....apis.eval.eval import Eval, EvalTaskConfig, EvaluateResponse, JobStatus
|
||||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||||
from llama_stack.apis.common.job_types import Job
|
|
||||||
from llama_stack.apis.datasetio import DatasetIO
|
from llama_stack.apis.datasetio import DatasetIO
|
||||||
from llama_stack.apis.datasets import Datasets
|
from llama_stack.apis.datasets import Datasets
|
||||||
from llama_stack.apis.eval import Eval, EvalCandidate, EvaluateResponse, JobStatus
|
from llama_stack.apis.eval_tasks import EvalTaskDef
|
||||||
from llama_stack.apis.inference import Inference
|
from llama_stack.apis.inference import Inference
|
||||||
from llama_stack.apis.scoring import Scoring
|
from llama_stack.apis.scoring import Scoring
|
||||||
|
from llama_stack.providers.datatypes import EvalTasksProtocolPrivate
|
||||||
|
|
||||||
from .config import MetaReferenceEvalConfig
|
from .config import MetaReferenceEvalConfig
|
||||||
|
|
||||||
|
@ -25,7 +27,7 @@ class ColumnName(Enum):
|
||||||
generated_answer = "generated_answer"
|
generated_answer = "generated_answer"
|
||||||
|
|
||||||
|
|
||||||
class MetaReferenceEvalImpl(Eval):
|
class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
config: MetaReferenceEvalConfig,
|
config: MetaReferenceEvalConfig,
|
||||||
|
@ -43,10 +45,18 @@ class MetaReferenceEvalImpl(Eval):
|
||||||
# TODO: assume sync job, will need jobs API for async scheduling
|
# TODO: assume sync job, will need jobs API for async scheduling
|
||||||
self.jobs = {}
|
self.jobs = {}
|
||||||
|
|
||||||
|
self.eval_tasks = {}
|
||||||
|
|
||||||
async def initialize(self) -> None: ...
|
async def initialize(self) -> None: ...
|
||||||
|
|
||||||
async def shutdown(self) -> None: ...
|
async def shutdown(self) -> None: ...
|
||||||
|
|
||||||
|
async def register_eval_task(self, task_def: EvalTaskDef) -> None:
|
||||||
|
self.eval_tasks[task_def.identifier] = task_def
|
||||||
|
|
||||||
|
async def list_eval_tasks(self) -> List[EvalTaskDef]:
|
||||||
|
return list(self.eval_tasks.values())
|
||||||
|
|
||||||
async def validate_eval_input_dataset_schema(self, dataset_id: str) -> None:
|
async def validate_eval_input_dataset_schema(self, dataset_id: str) -> None:
|
||||||
dataset_def = await self.datasets_api.get_dataset(dataset_identifier=dataset_id)
|
dataset_def = await self.datasets_api.get_dataset(dataset_identifier=dataset_id)
|
||||||
if not dataset_def.dataset_schema or len(dataset_def.dataset_schema) == 0:
|
if not dataset_def.dataset_schema or len(dataset_def.dataset_schema) == 0:
|
||||||
|
@ -70,21 +80,26 @@ class MetaReferenceEvalImpl(Eval):
|
||||||
f"Dataset {dataset_id} does not have a correct input schema in {expected_schemas}"
|
f"Dataset {dataset_id} does not have a correct input schema in {expected_schemas}"
|
||||||
)
|
)
|
||||||
|
|
||||||
async def evaluate_batch(
|
async def run_eval(
|
||||||
self,
|
self,
|
||||||
dataset_id: str,
|
task_id: str,
|
||||||
candidate: EvalCandidate,
|
task_config: EvalTaskConfig,
|
||||||
scoring_functions: List[str],
|
|
||||||
) -> Job:
|
) -> Job:
|
||||||
|
task_def = self.eval_tasks[task_id]
|
||||||
|
dataset_id = task_def.dataset_id
|
||||||
|
candidate = task_config.eval_candidate
|
||||||
|
scoring_functions = task_def.scoring_functions
|
||||||
|
|
||||||
await self.validate_eval_input_dataset_schema(dataset_id=dataset_id)
|
await self.validate_eval_input_dataset_schema(dataset_id=dataset_id)
|
||||||
all_rows = await self.datasetio_api.get_rows_paginated(
|
all_rows = await self.datasetio_api.get_rows_paginated(
|
||||||
dataset_id=dataset_id,
|
dataset_id=dataset_id,
|
||||||
rows_in_page=-1,
|
rows_in_page=-1,
|
||||||
)
|
)
|
||||||
res = await self.evaluate(
|
res = await self.evaluate_rows(
|
||||||
|
task_id=task_id,
|
||||||
input_rows=all_rows.rows,
|
input_rows=all_rows.rows,
|
||||||
candidate=candidate,
|
|
||||||
scoring_functions=scoring_functions,
|
scoring_functions=scoring_functions,
|
||||||
|
task_config=task_config,
|
||||||
)
|
)
|
||||||
|
|
||||||
# TODO: currently needs to wait for generation before returning
|
# TODO: currently needs to wait for generation before returning
|
||||||
|
@ -93,12 +108,14 @@ class MetaReferenceEvalImpl(Eval):
|
||||||
self.jobs[job_id] = res
|
self.jobs[job_id] = res
|
||||||
return Job(job_id=job_id)
|
return Job(job_id=job_id)
|
||||||
|
|
||||||
async def evaluate(
|
async def evaluate_rows(
|
||||||
self,
|
self,
|
||||||
|
task_id: str,
|
||||||
input_rows: List[Dict[str, Any]],
|
input_rows: List[Dict[str, Any]],
|
||||||
candidate: EvalCandidate,
|
|
||||||
scoring_functions: List[str],
|
scoring_functions: List[str],
|
||||||
|
task_config: EvalTaskConfig,
|
||||||
) -> EvaluateResponse:
|
) -> EvaluateResponse:
|
||||||
|
candidate = task_config.eval_candidate
|
||||||
if candidate.type == "agent":
|
if candidate.type == "agent":
|
||||||
raise NotImplementedError(
|
raise NotImplementedError(
|
||||||
"Evaluation with generation has not been implemented for agents"
|
"Evaluation with generation has not been implemented for agents"
|
||||||
|
@ -122,7 +139,10 @@ class MetaReferenceEvalImpl(Eval):
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
elif ColumnName.chat_completion_input.value in x:
|
elif ColumnName.chat_completion_input.value in x:
|
||||||
input_messages = eval(str(x[ColumnName.chat_completion_input.value]))
|
chat_completion_input_str = str(
|
||||||
|
x[ColumnName.chat_completion_input.value]
|
||||||
|
)
|
||||||
|
input_messages = eval(chat_completion_input_str)
|
||||||
input_messages = [UserMessage(**x) for x in input_messages]
|
input_messages = [UserMessage(**x) for x in input_messages]
|
||||||
messages = []
|
messages = []
|
||||||
if candidate.system_message:
|
if candidate.system_message:
|
||||||
|
@ -147,23 +167,33 @@ class MetaReferenceEvalImpl(Eval):
|
||||||
for input_r, generated_r in zip(input_rows, generations)
|
for input_r, generated_r in zip(input_rows, generations)
|
||||||
]
|
]
|
||||||
|
|
||||||
|
if task_config.type == "app" and task_config.scoring_params is not None:
|
||||||
|
scoring_functions_dict = {
|
||||||
|
scoring_fn_id: task_config.scoring_params.get(scoring_fn_id, None)
|
||||||
|
for scoring_fn_id in scoring_functions
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
scoring_functions_dict = {
|
||||||
|
scoring_fn_id: None for scoring_fn_id in scoring_functions
|
||||||
|
}
|
||||||
|
|
||||||
score_response = await self.scoring_api.score(
|
score_response = await self.scoring_api.score(
|
||||||
input_rows=score_input_rows, scoring_functions=scoring_functions
|
input_rows=score_input_rows, scoring_functions=scoring_functions_dict
|
||||||
)
|
)
|
||||||
|
|
||||||
return EvaluateResponse(generations=generations, scores=score_response.results)
|
return EvaluateResponse(generations=generations, scores=score_response.results)
|
||||||
|
|
||||||
async def job_status(self, job_id: str) -> Optional[JobStatus]:
|
async def job_status(self, task_id: str, job_id: str) -> Optional[JobStatus]:
|
||||||
if job_id in self.jobs:
|
if job_id in self.jobs:
|
||||||
return JobStatus.completed
|
return JobStatus.completed
|
||||||
|
|
||||||
return None
|
return None
|
||||||
|
|
||||||
async def job_cancel(self, job_id: str) -> None:
|
async def job_cancel(self, task_id: str, job_id: str) -> None:
|
||||||
raise NotImplementedError("Job cancel is not implemented yet")
|
raise NotImplementedError("Job cancel is not implemented yet")
|
||||||
|
|
||||||
async def job_result(self, job_id: str) -> EvaluateResponse:
|
async def job_result(self, task_id: str, job_id: str) -> EvaluateResponse:
|
||||||
status = await self.job_status(job_id)
|
status = await self.job_status(task_id, job_id)
|
||||||
if not status or status != JobStatus.completed:
|
if not status or status != JobStatus.completed:
|
||||||
raise ValueError(f"Job is not completed, Status: {status.value}")
|
raise ValueError(f"Job is not completed, Status: {status.value}")
|
||||||
|
|
||||||
|
|
|
@ -74,8 +74,7 @@ class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
||||||
return scoring_fn_defs_list
|
return scoring_fn_defs_list
|
||||||
|
|
||||||
async def register_scoring_function(self, function_def: ScoringFnDef) -> None:
|
async def register_scoring_function(self, function_def: ScoringFnDef) -> None:
|
||||||
self.llm_as_judge_fn.register_scoring_fn_def(function_def)
|
raise NotImplementedError("Register scoring function not implemented yet")
|
||||||
self.scoring_fn_id_impls[function_def.identifier] = self.llm_as_judge_fn
|
|
||||||
|
|
||||||
async def validate_scoring_input_dataset_schema(self, dataset_id: str) -> None:
|
async def validate_scoring_input_dataset_schema(self, dataset_id: str) -> None:
|
||||||
dataset_def = await self.datasets_api.get_dataset(dataset_identifier=dataset_id)
|
dataset_def = await self.datasets_api.get_dataset(dataset_identifier=dataset_id)
|
||||||
|
@ -97,7 +96,7 @@ class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
||||||
async def score_batch(
|
async def score_batch(
|
||||||
self,
|
self,
|
||||||
dataset_id: str,
|
dataset_id: str,
|
||||||
scoring_functions: List[str],
|
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
||||||
save_results_dataset: bool = False,
|
save_results_dataset: bool = False,
|
||||||
) -> ScoreBatchResponse:
|
) -> ScoreBatchResponse:
|
||||||
await self.validate_scoring_input_dataset_schema(dataset_id=dataset_id)
|
await self.validate_scoring_input_dataset_schema(dataset_id=dataset_id)
|
||||||
|
@ -106,7 +105,8 @@ class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
||||||
rows_in_page=-1,
|
rows_in_page=-1,
|
||||||
)
|
)
|
||||||
res = await self.score(
|
res = await self.score(
|
||||||
input_rows=all_rows.rows, scoring_functions=scoring_functions
|
input_rows=all_rows.rows,
|
||||||
|
scoring_functions=scoring_functions,
|
||||||
)
|
)
|
||||||
if save_results_dataset:
|
if save_results_dataset:
|
||||||
# TODO: persist and register dataset on to server for reading
|
# TODO: persist and register dataset on to server for reading
|
||||||
|
@ -118,14 +118,19 @@ class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
||||||
)
|
)
|
||||||
|
|
||||||
async def score(
|
async def score(
|
||||||
self, input_rows: List[Dict[str, Any]], scoring_functions: List[str]
|
self,
|
||||||
|
input_rows: List[Dict[str, Any]],
|
||||||
|
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
||||||
) -> ScoreResponse:
|
) -> ScoreResponse:
|
||||||
res = {}
|
res = {}
|
||||||
for scoring_fn_id in scoring_functions:
|
for scoring_fn_id in scoring_functions.keys():
|
||||||
if scoring_fn_id not in self.scoring_fn_id_impls:
|
if scoring_fn_id not in self.scoring_fn_id_impls:
|
||||||
raise ValueError(f"Scoring function {scoring_fn_id} is not supported.")
|
raise ValueError(f"Scoring function {scoring_fn_id} is not supported.")
|
||||||
scoring_fn = self.scoring_fn_id_impls[scoring_fn_id]
|
scoring_fn = self.scoring_fn_id_impls[scoring_fn_id]
|
||||||
score_results = await scoring_fn.score(input_rows, scoring_fn_id)
|
scoring_fn_params = scoring_functions.get(scoring_fn_id, None)
|
||||||
|
score_results = await scoring_fn.score(
|
||||||
|
input_rows, scoring_fn_id, scoring_fn_params
|
||||||
|
)
|
||||||
agg_results = await scoring_fn.aggregate(score_results)
|
agg_results = await scoring_fn.aggregate(score_results)
|
||||||
res[scoring_fn_id] = ScoringResult(
|
res[scoring_fn_id] = ScoringResult(
|
||||||
score_rows=score_results,
|
score_rows=score_results,
|
||||||
|
|
|
@ -36,7 +36,10 @@ class BaseScoringFn(ABC):
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
async def score_row(
|
async def score_row(
|
||||||
self, input_row: Dict[str, Any], scoring_fn_identifier: Optional[str] = None
|
self,
|
||||||
|
input_row: Dict[str, Any],
|
||||||
|
scoring_fn_identifier: Optional[str] = None,
|
||||||
|
scoring_params: Optional[ScoringFnParams] = None,
|
||||||
) -> ScoringResultRow:
|
) -> ScoringResultRow:
|
||||||
raise NotImplementedError()
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
@ -50,8 +53,9 @@ class BaseScoringFn(ABC):
|
||||||
self,
|
self,
|
||||||
input_rows: List[Dict[str, Any]],
|
input_rows: List[Dict[str, Any]],
|
||||||
scoring_fn_identifier: Optional[str] = None,
|
scoring_fn_identifier: Optional[str] = None,
|
||||||
|
scoring_params: Optional[ScoringFnParams] = None,
|
||||||
) -> List[ScoringResultRow]:
|
) -> List[ScoringResultRow]:
|
||||||
return [
|
return [
|
||||||
await self.score_row(input_row, scoring_fn_identifier)
|
await self.score_row(input_row, scoring_fn_identifier, scoring_params)
|
||||||
for input_row in input_rows
|
for input_row in input_rows
|
||||||
]
|
]
|
||||||
|
|
|
@ -35,6 +35,7 @@ class EqualityScoringFn(BaseScoringFn):
|
||||||
self,
|
self,
|
||||||
input_row: Dict[str, Any],
|
input_row: Dict[str, Any],
|
||||||
scoring_fn_identifier: Optional[str] = "equality",
|
scoring_fn_identifier: Optional[str] = "equality",
|
||||||
|
scoring_params: Optional[ScoringFnParams] = None,
|
||||||
) -> ScoringResultRow:
|
) -> ScoringResultRow:
|
||||||
assert "expected_answer" in input_row, "Expected answer not found in input row."
|
assert "expected_answer" in input_row, "Expected answer not found in input row."
|
||||||
assert (
|
assert (
|
||||||
|
|
|
@ -28,9 +28,13 @@ llm_as_judge_8b_correctness = ScoringFnDef(
|
||||||
description="Llm As Judge Scoring Function",
|
description="Llm As Judge Scoring Function",
|
||||||
parameters=[],
|
parameters=[],
|
||||||
return_type=NumberType(),
|
return_type=NumberType(),
|
||||||
context=LLMAsJudgeContext(
|
params=LLMAsJudgeScoringFnParams(
|
||||||
prompt_template=JUDGE_PROMPT,
|
prompt_template=JUDGE_PROMPT,
|
||||||
judge_model="Llama3.1-8B-Instruct",
|
judge_model="Llama3.1-8B-Instruct",
|
||||||
judge_score_regex=[r"Total rating: (\d+)", r"rating: (\d+)", r"Rating: (\d+)"],
|
judge_score_regexes=[
|
||||||
|
r"Total rating: (\d+)",
|
||||||
|
r"rating: (\d+)",
|
||||||
|
r"Rating: (\d+)",
|
||||||
|
],
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|
|
@ -36,31 +36,37 @@ class LlmAsJudgeScoringFn(BaseScoringFn):
|
||||||
self,
|
self,
|
||||||
input_row: Dict[str, Any],
|
input_row: Dict[str, Any],
|
||||||
scoring_fn_identifier: Optional[str] = None,
|
scoring_fn_identifier: Optional[str] = None,
|
||||||
|
scoring_params: Optional[ScoringFnParams] = None,
|
||||||
) -> ScoringResultRow:
|
) -> ScoringResultRow:
|
||||||
assert (
|
assert (
|
||||||
scoring_fn_identifier is not None
|
scoring_fn_identifier is not None
|
||||||
), "Scoring function identifier not found."
|
), "Scoring function identifier not found."
|
||||||
fn_def = self.supported_fn_defs_registry[scoring_fn_identifier]
|
fn_def = self.supported_fn_defs_registry[scoring_fn_identifier]
|
||||||
assert fn_def.context is not None, f"LLMAsJudgeContext not found for {fn_def}."
|
|
||||||
|
# override params if scoring_params is provided
|
||||||
|
if scoring_params is not None:
|
||||||
|
fn_def.params = scoring_params
|
||||||
|
|
||||||
|
assert fn_def.params is not None, f"LLMAsJudgeparams not found for {fn_def}."
|
||||||
assert (
|
assert (
|
||||||
fn_def.context.prompt_template is not None
|
fn_def.params.prompt_template is not None
|
||||||
), "LLM Judge prompt_template not found."
|
), "LLM Judge prompt_template not found."
|
||||||
assert (
|
assert (
|
||||||
fn_def.context.judge_score_regex is not None
|
fn_def.params.judge_score_regexes is not None
|
||||||
), "LLM Judge judge_score_regex not found."
|
), "LLM Judge judge_score_regexes not found."
|
||||||
|
|
||||||
input_query = input_row["input_query"]
|
input_query = input_row["input_query"]
|
||||||
expected_answer = input_row["expected_answer"]
|
expected_answer = input_row["expected_answer"]
|
||||||
generated_answer = input_row["generated_answer"]
|
generated_answer = input_row["generated_answer"]
|
||||||
|
|
||||||
judge_input_msg = fn_def.context.prompt_template.format(
|
judge_input_msg = fn_def.params.prompt_template.format(
|
||||||
input_query=input_query,
|
input_query=input_query,
|
||||||
expected_answer=expected_answer,
|
expected_answer=expected_answer,
|
||||||
generated_answer=generated_answer,
|
generated_answer=generated_answer,
|
||||||
)
|
)
|
||||||
|
|
||||||
judge_response = await self.inference_api.chat_completion(
|
judge_response = await self.inference_api.chat_completion(
|
||||||
model=fn_def.context.judge_model,
|
model=fn_def.params.judge_model,
|
||||||
messages=[
|
messages=[
|
||||||
{
|
{
|
||||||
"role": "user",
|
"role": "user",
|
||||||
|
@ -69,10 +75,10 @@ class LlmAsJudgeScoringFn(BaseScoringFn):
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
content = judge_response.completion_message.content
|
content = judge_response.completion_message.content
|
||||||
rating_regexs = fn_def.context.judge_score_regex
|
rating_regexes = fn_def.params.judge_score_regexes
|
||||||
|
|
||||||
judge_rating = None
|
judge_rating = None
|
||||||
for regex in rating_regexs:
|
for regex in rating_regexes:
|
||||||
match = re.search(regex, content)
|
match = re.search(regex, content)
|
||||||
if match:
|
if match:
|
||||||
judge_rating = int(match.group(1))
|
judge_rating = int(match.group(1))
|
||||||
|
|
|
@ -34,6 +34,7 @@ class SubsetOfScoringFn(BaseScoringFn):
|
||||||
self,
|
self,
|
||||||
input_row: Dict[str, Any],
|
input_row: Dict[str, Any],
|
||||||
scoring_fn_identifier: Optional[str] = "subset_of",
|
scoring_fn_identifier: Optional[str] = "subset_of",
|
||||||
|
scoring_params: Optional[ScoringFnParams] = None,
|
||||||
) -> ScoringResultRow:
|
) -> ScoringResultRow:
|
||||||
expected_answer = input_row["expected_answer"]
|
expected_answer = input_row["expected_answer"]
|
||||||
generated_answer = input_row["generated_answer"]
|
generated_answer = input_row["generated_answer"]
|
||||||
|
|
|
@ -153,4 +153,7 @@ pytest_plugins = [
|
||||||
"llama_stack.providers.tests.safety.fixtures",
|
"llama_stack.providers.tests.safety.fixtures",
|
||||||
"llama_stack.providers.tests.memory.fixtures",
|
"llama_stack.providers.tests.memory.fixtures",
|
||||||
"llama_stack.providers.tests.agents.fixtures",
|
"llama_stack.providers.tests.agents.fixtures",
|
||||||
|
"llama_stack.providers.tests.datasetio.fixtures",
|
||||||
|
"llama_stack.providers.tests.scoring.fixtures",
|
||||||
|
"llama_stack.providers.tests.eval.fixtures",
|
||||||
]
|
]
|
||||||
|
|
29
llama_stack/providers/tests/datasetio/conftest.py
Normal file
29
llama_stack/providers/tests/datasetio/conftest.py
Normal file
|
@ -0,0 +1,29 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from .fixtures import DATASETIO_FIXTURES
|
||||||
|
|
||||||
|
|
||||||
|
def pytest_configure(config):
|
||||||
|
for fixture_name in DATASETIO_FIXTURES:
|
||||||
|
config.addinivalue_line(
|
||||||
|
"markers",
|
||||||
|
f"{fixture_name}: marks tests as {fixture_name} specific",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def pytest_generate_tests(metafunc):
|
||||||
|
if "datasetio_stack" in metafunc.fixturenames:
|
||||||
|
metafunc.parametrize(
|
||||||
|
"datasetio_stack",
|
||||||
|
[
|
||||||
|
pytest.param(fixture_name, marks=getattr(pytest.mark, fixture_name))
|
||||||
|
for fixture_name in DATASETIO_FIXTURES
|
||||||
|
],
|
||||||
|
indirect=True,
|
||||||
|
)
|
48
llama_stack/providers/tests/datasetio/fixtures.py
Normal file
48
llama_stack/providers/tests/datasetio/fixtures.py
Normal file
|
@ -0,0 +1,48 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
import pytest_asyncio
|
||||||
|
|
||||||
|
from llama_stack.distribution.datatypes import Api, Provider
|
||||||
|
|
||||||
|
from llama_stack.providers.tests.resolver import resolve_impls_for_test_v2
|
||||||
|
from ..conftest import ProviderFixture, remote_stack_fixture
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture(scope="session")
|
||||||
|
def datasetio_remote() -> ProviderFixture:
|
||||||
|
return remote_stack_fixture()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture(scope="session")
|
||||||
|
def datasetio_meta_reference() -> ProviderFixture:
|
||||||
|
return ProviderFixture(
|
||||||
|
providers=[
|
||||||
|
Provider(
|
||||||
|
provider_id="meta-reference",
|
||||||
|
provider_type="meta-reference",
|
||||||
|
config={},
|
||||||
|
)
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
DATASETIO_FIXTURES = ["meta_reference", "remote"]
|
||||||
|
|
||||||
|
|
||||||
|
@pytest_asyncio.fixture(scope="session")
|
||||||
|
async def datasetio_stack(request):
|
||||||
|
fixture_name = request.param
|
||||||
|
fixture = request.getfixturevalue(f"datasetio_{fixture_name}")
|
||||||
|
|
||||||
|
impls = await resolve_impls_for_test_v2(
|
||||||
|
[Api.datasetio],
|
||||||
|
{"datasetio": fixture.providers},
|
||||||
|
fixture.provider_data,
|
||||||
|
)
|
||||||
|
|
||||||
|
return impls[Api.datasetio], impls[Api.datasets]
|
|
@ -1,4 +0,0 @@
|
||||||
providers:
|
|
||||||
- provider_id: test-meta
|
|
||||||
provider_type: meta-reference
|
|
||||||
config: {}
|
|
|
@ -3,11 +3,10 @@
|
||||||
#
|
#
|
||||||
# This source code is licensed under the terms described in the LICENSE file in
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
import os
|
import os
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
import pytest_asyncio
|
|
||||||
|
|
||||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||||
from llama_stack.apis.datasetio import * # noqa: F403
|
from llama_stack.apis.datasetio import * # noqa: F403
|
||||||
from llama_stack.distribution.datatypes import * # noqa: F403
|
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||||
|
@ -15,35 +14,11 @@ import base64
|
||||||
import mimetypes
|
import mimetypes
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
from llama_stack.providers.tests.resolver import resolve_impls_for_test
|
|
||||||
|
|
||||||
# How to run this test:
|
# How to run this test:
|
||||||
#
|
#
|
||||||
# 1. Ensure you have a conda with the right dependencies installed. This is a bit tricky
|
# pytest llama_stack/providers/tests/datasetio/test_datasetio.py
|
||||||
# since it depends on the provider you are testing. On top of that you need
|
# -m "meta_reference"
|
||||||
# `pytest` and `pytest-asyncio` installed.
|
# -v -s --tb=short --disable-warnings
|
||||||
#
|
|
||||||
# 2. Copy and modify the provider_config_example.yaml depending on the provider you are testing.
|
|
||||||
#
|
|
||||||
# 3. Run:
|
|
||||||
#
|
|
||||||
# ```bash
|
|
||||||
# PROVIDER_ID=<your_provider> \
|
|
||||||
# PROVIDER_CONFIG=provider_config.yaml \
|
|
||||||
# pytest -s llama_stack/providers/tests/datasetio/test_datasetio.py \
|
|
||||||
# --tb=short --disable-warnings
|
|
||||||
# ```
|
|
||||||
|
|
||||||
|
|
||||||
@pytest_asyncio.fixture(scope="session")
|
|
||||||
async def datasetio_settings():
|
|
||||||
impls = await resolve_impls_for_test(
|
|
||||||
Api.datasetio,
|
|
||||||
)
|
|
||||||
return {
|
|
||||||
"datasetio_impl": impls[Api.datasetio],
|
|
||||||
"datasets_impl": impls[Api.datasets],
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def data_url_from_file(file_path: str) -> str:
|
def data_url_from_file(file_path: str) -> str:
|
||||||
|
@ -82,8 +57,7 @@ async def register_dataset(
|
||||||
|
|
||||||
dataset = DatasetDefWithProvider(
|
dataset = DatasetDefWithProvider(
|
||||||
identifier=dataset_id,
|
identifier=dataset_id,
|
||||||
provider_id=os.environ.get("DATASETIO_PROVIDER_ID", None)
|
provider_id="",
|
||||||
or os.environ["PROVIDER_ID"],
|
|
||||||
url=URL(
|
url=URL(
|
||||||
uri=test_url,
|
uri=test_url,
|
||||||
),
|
),
|
||||||
|
@ -92,57 +66,47 @@ async def register_dataset(
|
||||||
await datasets_impl.register_dataset(dataset)
|
await datasets_impl.register_dataset(dataset)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
class TestDatasetIO:
|
||||||
async def test_datasets_list(datasetio_settings):
|
@pytest.mark.asyncio
|
||||||
|
async def test_datasets_list(self, datasetio_stack):
|
||||||
# NOTE: this needs you to ensure that you are starting from a clean state
|
# NOTE: this needs you to ensure that you are starting from a clean state
|
||||||
# but so far we don't have an unregister API unfortunately, so be careful
|
# but so far we don't have an unregister API unfortunately, so be careful
|
||||||
datasets_impl = datasetio_settings["datasets_impl"]
|
_, datasets_impl = datasetio_stack
|
||||||
response = await datasets_impl.list_datasets()
|
response = await datasets_impl.list_datasets()
|
||||||
assert isinstance(response, list)
|
assert isinstance(response, list)
|
||||||
assert len(response) == 0
|
assert len(response) == 0
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
@pytest.mark.asyncio
|
async def test_register_dataset(self, datasetio_stack):
|
||||||
async def test_datasets_register(datasetio_settings):
|
_, datasets_impl = datasetio_stack
|
||||||
# NOTE: this needs you to ensure that you are starting from a clean state
|
|
||||||
# but so far we don't have an unregister API unfortunately, so be careful
|
|
||||||
datasets_impl = datasetio_settings["datasets_impl"]
|
|
||||||
await register_dataset(datasets_impl)
|
|
||||||
|
|
||||||
response = await datasets_impl.list_datasets()
|
|
||||||
assert isinstance(response, list)
|
|
||||||
assert len(response) == 1
|
|
||||||
|
|
||||||
# register same dataset with same id again will fail
|
|
||||||
await register_dataset(datasets_impl)
|
await register_dataset(datasets_impl)
|
||||||
response = await datasets_impl.list_datasets()
|
response = await datasets_impl.list_datasets()
|
||||||
assert isinstance(response, list)
|
assert isinstance(response, list)
|
||||||
assert len(response) == 1
|
assert len(response) == 1
|
||||||
assert response[0].identifier == "test_dataset"
|
assert response[0].identifier == "test_dataset"
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
@pytest.mark.asyncio
|
async def test_get_rows_paginated(self, datasetio_stack):
|
||||||
async def test_get_rows_paginated(datasetio_settings):
|
datasetio_impl, datasets_impl = datasetio_stack
|
||||||
datasetio_impl = datasetio_settings["datasetio_impl"]
|
|
||||||
datasets_impl = datasetio_settings["datasets_impl"]
|
|
||||||
await register_dataset(datasets_impl)
|
await register_dataset(datasets_impl)
|
||||||
|
|
||||||
response = await datasetio_impl.get_rows_paginated(
|
response = await datasetio_impl.get_rows_paginated(
|
||||||
dataset_id="test_dataset",
|
dataset_id="test_dataset",
|
||||||
rows_in_page=3,
|
rows_in_page=3,
|
||||||
)
|
)
|
||||||
|
|
||||||
assert isinstance(response.rows, list)
|
assert isinstance(response.rows, list)
|
||||||
assert len(response.rows) == 3
|
assert len(response.rows) == 3
|
||||||
assert response.next_page_token == "3"
|
assert response.next_page_token == "3"
|
||||||
|
|
||||||
|
provider = datasetio_impl.routing_table.get_provider_impl("test_dataset")
|
||||||
|
if provider.__provider_spec__.provider_type == "remote":
|
||||||
|
pytest.skip("remote provider doesn't support get_rows_paginated")
|
||||||
|
|
||||||
# iterate over all rows
|
# iterate over all rows
|
||||||
response = await datasetio_impl.get_rows_paginated(
|
response = await datasetio_impl.get_rows_paginated(
|
||||||
dataset_id="test_dataset",
|
dataset_id="test_dataset",
|
||||||
rows_in_page=2,
|
rows_in_page=2,
|
||||||
page_token=response.next_page_token,
|
page_token=response.next_page_token,
|
||||||
)
|
)
|
||||||
|
|
||||||
assert isinstance(response.rows, list)
|
assert isinstance(response.rows, list)
|
||||||
assert len(response.rows) == 2
|
assert len(response.rows) == 2
|
||||||
assert response.next_page_token == "5"
|
assert response.next_page_token == "5"
|
||||||
|
|
72
llama_stack/providers/tests/eval/conftest.py
Normal file
72
llama_stack/providers/tests/eval/conftest.py
Normal file
|
@ -0,0 +1,72 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from ..conftest import get_provider_fixture_overrides
|
||||||
|
|
||||||
|
from ..datasetio.fixtures import DATASETIO_FIXTURES
|
||||||
|
from ..inference.fixtures import INFERENCE_FIXTURES
|
||||||
|
from ..scoring.fixtures import SCORING_FIXTURES
|
||||||
|
from .fixtures import EVAL_FIXTURES
|
||||||
|
|
||||||
|
DEFAULT_PROVIDER_COMBINATIONS = [
|
||||||
|
pytest.param(
|
||||||
|
{
|
||||||
|
"eval": "meta_reference",
|
||||||
|
"scoring": "meta_reference",
|
||||||
|
"datasetio": "meta_reference",
|
||||||
|
"inference": "fireworks",
|
||||||
|
},
|
||||||
|
id="meta_reference_eval_fireworks_inference",
|
||||||
|
marks=pytest.mark.meta_reference_eval_fireworks_inference,
|
||||||
|
),
|
||||||
|
pytest.param(
|
||||||
|
{
|
||||||
|
"eval": "meta_reference",
|
||||||
|
"scoring": "meta_reference",
|
||||||
|
"datasetio": "meta_reference",
|
||||||
|
"inference": "together",
|
||||||
|
},
|
||||||
|
id="meta_reference_eval_together_inference",
|
||||||
|
marks=pytest.mark.meta_reference_eval_together_inference,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def pytest_configure(config):
|
||||||
|
for fixture_name in [
|
||||||
|
"meta_reference_eval_fireworks_inference",
|
||||||
|
"meta_reference_eval_together_inference",
|
||||||
|
]:
|
||||||
|
config.addinivalue_line(
|
||||||
|
"markers",
|
||||||
|
f"{fixture_name}: marks tests as {fixture_name} specific",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def pytest_addoption(parser):
|
||||||
|
parser.addoption(
|
||||||
|
"--inference-model",
|
||||||
|
action="store",
|
||||||
|
default="Llama3.2-3B-Instruct",
|
||||||
|
help="Specify the inference model to use for testing",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def pytest_generate_tests(metafunc):
|
||||||
|
if "eval_stack" in metafunc.fixturenames:
|
||||||
|
available_fixtures = {
|
||||||
|
"eval": EVAL_FIXTURES,
|
||||||
|
"scoring": SCORING_FIXTURES,
|
||||||
|
"datasetio": DATASETIO_FIXTURES,
|
||||||
|
"inference": INFERENCE_FIXTURES,
|
||||||
|
}
|
||||||
|
combinations = (
|
||||||
|
get_provider_fixture_overrides(metafunc.config, available_fixtures)
|
||||||
|
or DEFAULT_PROVIDER_COMBINATIONS
|
||||||
|
)
|
||||||
|
metafunc.parametrize("eval_stack", combinations, indirect=True)
|
55
llama_stack/providers/tests/eval/fixtures.py
Normal file
55
llama_stack/providers/tests/eval/fixtures.py
Normal file
|
@ -0,0 +1,55 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
import pytest_asyncio
|
||||||
|
|
||||||
|
from llama_stack.distribution.datatypes import Api, Provider
|
||||||
|
|
||||||
|
from llama_stack.providers.tests.resolver import resolve_impls_for_test_v2
|
||||||
|
from ..conftest import ProviderFixture, remote_stack_fixture
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture(scope="session")
|
||||||
|
def eval_remote() -> ProviderFixture:
|
||||||
|
return remote_stack_fixture()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture(scope="session")
|
||||||
|
def eval_meta_reference() -> ProviderFixture:
|
||||||
|
return ProviderFixture(
|
||||||
|
providers=[
|
||||||
|
Provider(
|
||||||
|
provider_id="meta-reference",
|
||||||
|
provider_type="meta-reference",
|
||||||
|
config={},
|
||||||
|
)
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
EVAL_FIXTURES = ["meta_reference", "remote"]
|
||||||
|
|
||||||
|
|
||||||
|
@pytest_asyncio.fixture(scope="session")
|
||||||
|
async def eval_stack(request):
|
||||||
|
fixture_dict = request.param
|
||||||
|
|
||||||
|
providers = {}
|
||||||
|
provider_data = {}
|
||||||
|
for key in ["datasetio", "eval", "scoring", "inference"]:
|
||||||
|
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
|
||||||
|
providers[key] = fixture.providers
|
||||||
|
if fixture.provider_data:
|
||||||
|
provider_data.update(fixture.provider_data)
|
||||||
|
|
||||||
|
impls = await resolve_impls_for_test_v2(
|
||||||
|
[Api.eval, Api.datasetio, Api.inference, Api.scoring],
|
||||||
|
providers,
|
||||||
|
provider_data,
|
||||||
|
)
|
||||||
|
|
||||||
|
return impls
|
|
@ -1,22 +0,0 @@
|
||||||
providers:
|
|
||||||
datasetio:
|
|
||||||
- provider_id: test-meta
|
|
||||||
provider_type: meta-reference
|
|
||||||
config: {}
|
|
||||||
scoring:
|
|
||||||
- provider_id: test-meta
|
|
||||||
provider_type: meta-reference
|
|
||||||
config: {}
|
|
||||||
eval:
|
|
||||||
- provider_id: test-meta
|
|
||||||
provider_type: meta-reference
|
|
||||||
config: {}
|
|
||||||
inference:
|
|
||||||
- provider_id: test-tgi
|
|
||||||
provider_type: remote::tgi
|
|
||||||
config:
|
|
||||||
url: http://127.0.0.1:5009
|
|
||||||
- provider_id: test-tgi-2
|
|
||||||
provider_type: remote::tgi
|
|
||||||
config:
|
|
||||||
url: http://127.0.0.1:5010
|
|
|
@ -3,79 +3,122 @@
|
||||||
#
|
#
|
||||||
# This source code is licensed under the terms described in the LICENSE file in
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
import pytest
|
|
||||||
import pytest_asyncio
|
|
||||||
|
|
||||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
|
||||||
from llama_stack.apis.datasetio import * # noqa: F403
|
import pytest
|
||||||
from llama_stack.apis.eval.eval import ModelCandidate
|
|
||||||
from llama_stack.distribution.datatypes import * # noqa: F403
|
|
||||||
|
|
||||||
from llama_models.llama3.api import SamplingParams
|
from llama_models.llama3.api import SamplingParams
|
||||||
|
|
||||||
|
from llama_stack.apis.eval.eval import (
|
||||||
|
AppEvalTaskConfig,
|
||||||
|
EvalTaskDefWithProvider,
|
||||||
|
ModelCandidate,
|
||||||
|
)
|
||||||
|
from llama_stack.distribution.datatypes import Api
|
||||||
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
|
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
|
||||||
from llama_stack.providers.tests.resolver import resolve_impls_for_test
|
|
||||||
|
|
||||||
# How to run this test:
|
# How to run this test:
|
||||||
#
|
#
|
||||||
# 1. Ensure you have a conda with the right dependencies installed. This is a bit tricky
|
# pytest llama_stack/providers/tests/eval/test_eval.py
|
||||||
# since it depends on the provider you are testing. On top of that you need
|
# -m "meta_reference"
|
||||||
# `pytest` and `pytest-asyncio` installed.
|
# -v -s --tb=short --disable-warnings
|
||||||
#
|
|
||||||
# 2. Copy and modify the provider_config_example.yaml depending on the provider you are testing.
|
|
||||||
#
|
|
||||||
# 3. Run:
|
|
||||||
#
|
|
||||||
# ```bash
|
|
||||||
# PROVIDER_ID=<your_provider> \
|
|
||||||
# PROVIDER_CONFIG=provider_config.yaml \
|
|
||||||
# pytest -s llama_stack/providers/tests/eval/test_eval.py \
|
|
||||||
# --tb=short --disable-warnings
|
|
||||||
# ```
|
|
||||||
|
|
||||||
|
|
||||||
@pytest_asyncio.fixture(scope="session")
|
class Testeval:
|
||||||
async def eval_settings():
|
@pytest.mark.asyncio
|
||||||
impls = await resolve_impls_for_test(
|
async def test_eval_tasks_list(self, eval_stack):
|
||||||
Api.eval, deps=[Api.datasetio, Api.scoring, Api.inference]
|
# NOTE: this needs you to ensure that you are starting from a clean state
|
||||||
|
# but so far we don't have an unregister API unfortunately, so be careful
|
||||||
|
eval_tasks_impl = eval_stack[Api.eval_tasks]
|
||||||
|
response = await eval_tasks_impl.list_eval_tasks()
|
||||||
|
assert isinstance(response, list)
|
||||||
|
assert len(response) == 0
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_eval_evaluate_rows(self, eval_stack):
|
||||||
|
eval_impl, eval_tasks_impl, datasetio_impl, datasets_impl = (
|
||||||
|
eval_stack[Api.eval],
|
||||||
|
eval_stack[Api.eval_tasks],
|
||||||
|
eval_stack[Api.datasetio],
|
||||||
|
eval_stack[Api.datasets],
|
||||||
)
|
)
|
||||||
return {
|
|
||||||
"eval_impl": impls[Api.eval],
|
|
||||||
"scoring_impl": impls[Api.scoring],
|
|
||||||
"datasets_impl": impls[Api.datasets],
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
|
||||||
async def test_eval(eval_settings):
|
|
||||||
datasets_impl = eval_settings["datasets_impl"]
|
|
||||||
await register_dataset(
|
await register_dataset(
|
||||||
datasets_impl,
|
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
||||||
for_generation=True,
|
|
||||||
dataset_id="test_dataset_for_eval",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
response = await datasets_impl.list_datasets()
|
response = await datasets_impl.list_datasets()
|
||||||
assert len(response) == 1
|
assert len(response) == 1
|
||||||
|
rows = await datasetio_impl.get_rows_paginated(
|
||||||
|
dataset_id="test_dataset_for_eval",
|
||||||
|
rows_in_page=3,
|
||||||
|
)
|
||||||
|
assert len(rows.rows) == 3
|
||||||
|
|
||||||
eval_impl = eval_settings["eval_impl"]
|
scoring_functions = [
|
||||||
response = await eval_impl.evaluate_batch(
|
"meta-reference::llm_as_judge_8b_correctness",
|
||||||
dataset_id=response[0].identifier,
|
"meta-reference::equality",
|
||||||
candidate=ModelCandidate(
|
]
|
||||||
model="Llama3.2-1B-Instruct",
|
task_id = "meta-reference::app_eval"
|
||||||
|
task_def = EvalTaskDefWithProvider(
|
||||||
|
identifier=task_id,
|
||||||
|
dataset_id="test_dataset_for_eval",
|
||||||
|
scoring_functions=scoring_functions,
|
||||||
|
provider_id="meta-reference",
|
||||||
|
)
|
||||||
|
await eval_tasks_impl.register_eval_task(task_def)
|
||||||
|
|
||||||
|
response = await eval_impl.evaluate_rows(
|
||||||
|
task_id=task_id,
|
||||||
|
input_rows=rows.rows,
|
||||||
|
scoring_functions=scoring_functions,
|
||||||
|
task_config=AppEvalTaskConfig(
|
||||||
|
eval_candidate=ModelCandidate(
|
||||||
|
model="Llama3.2-3B-Instruct",
|
||||||
sampling_params=SamplingParams(),
|
sampling_params=SamplingParams(),
|
||||||
),
|
),
|
||||||
scoring_functions=[
|
),
|
||||||
"meta-reference::subset_of",
|
)
|
||||||
|
assert len(response.generations) == 3
|
||||||
|
assert "meta-reference::llm_as_judge_8b_correctness" in response.scores
|
||||||
|
assert "meta-reference::equality" in response.scores
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_eval_run_eval(self, eval_stack):
|
||||||
|
eval_impl, eval_tasks_impl, datasets_impl = (
|
||||||
|
eval_stack[Api.eval],
|
||||||
|
eval_stack[Api.eval_tasks],
|
||||||
|
eval_stack[Api.datasets],
|
||||||
|
)
|
||||||
|
await register_dataset(
|
||||||
|
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
||||||
|
)
|
||||||
|
|
||||||
|
scoring_functions = [
|
||||||
"meta-reference::llm_as_judge_8b_correctness",
|
"meta-reference::llm_as_judge_8b_correctness",
|
||||||
],
|
"meta-reference::subset_of",
|
||||||
|
]
|
||||||
|
|
||||||
|
task_id = "meta-reference::app_eval-2"
|
||||||
|
task_def = EvalTaskDefWithProvider(
|
||||||
|
identifier=task_id,
|
||||||
|
dataset_id="test_dataset_for_eval",
|
||||||
|
scoring_functions=scoring_functions,
|
||||||
|
provider_id="meta-reference",
|
||||||
|
)
|
||||||
|
await eval_tasks_impl.register_eval_task(task_def)
|
||||||
|
response = await eval_impl.run_eval(
|
||||||
|
task_id=task_id,
|
||||||
|
task_config=AppEvalTaskConfig(
|
||||||
|
eval_candidate=ModelCandidate(
|
||||||
|
model="Llama3.2-3B-Instruct",
|
||||||
|
sampling_params=SamplingParams(),
|
||||||
|
),
|
||||||
|
),
|
||||||
)
|
)
|
||||||
assert response.job_id == "0"
|
assert response.job_id == "0"
|
||||||
job_status = await eval_impl.job_status(response.job_id)
|
job_status = await eval_impl.job_status(task_id, response.job_id)
|
||||||
|
|
||||||
assert job_status and job_status.value == "completed"
|
assert job_status and job_status.value == "completed"
|
||||||
|
eval_response = await eval_impl.job_result(task_id, response.job_id)
|
||||||
eval_response = await eval_impl.job_result(response.job_id)
|
|
||||||
|
|
||||||
assert eval_response is not None
|
assert eval_response is not None
|
||||||
assert len(eval_response.generations) == 5
|
assert len(eval_response.generations) == 5
|
||||||
|
|
|
@ -64,6 +64,7 @@ def inference_ollama(inference_model) -> ProviderFixture:
|
||||||
inference_model = (
|
inference_model = (
|
||||||
[inference_model] if isinstance(inference_model, str) else inference_model
|
[inference_model] if isinstance(inference_model, str) else inference_model
|
||||||
)
|
)
|
||||||
|
print("!!!", inference_model)
|
||||||
if "Llama3.1-8B-Instruct" in inference_model:
|
if "Llama3.1-8B-Instruct" in inference_model:
|
||||||
pytest.skip("Ollama only supports Llama3.2-3B-Instruct for testing")
|
pytest.skip("Ollama only supports Llama3.2-3B-Instruct for testing")
|
||||||
|
|
||||||
|
|
68
llama_stack/providers/tests/scoring/conftest.py
Normal file
68
llama_stack/providers/tests/scoring/conftest.py
Normal file
|
@ -0,0 +1,68 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from ..conftest import get_provider_fixture_overrides
|
||||||
|
|
||||||
|
from ..datasetio.fixtures import DATASETIO_FIXTURES
|
||||||
|
from ..inference.fixtures import INFERENCE_FIXTURES
|
||||||
|
from .fixtures import SCORING_FIXTURES
|
||||||
|
|
||||||
|
DEFAULT_PROVIDER_COMBINATIONS = [
|
||||||
|
pytest.param(
|
||||||
|
{
|
||||||
|
"scoring": "meta_reference",
|
||||||
|
"datasetio": "meta_reference",
|
||||||
|
"inference": "fireworks",
|
||||||
|
},
|
||||||
|
id="meta_reference_scoring_fireworks_inference",
|
||||||
|
marks=pytest.mark.meta_reference_scoring_fireworks_inference,
|
||||||
|
),
|
||||||
|
pytest.param(
|
||||||
|
{
|
||||||
|
"scoring": "meta_reference",
|
||||||
|
"datasetio": "meta_reference",
|
||||||
|
"inference": "together",
|
||||||
|
},
|
||||||
|
id="meta_reference_scoring_together_inference",
|
||||||
|
marks=pytest.mark.meta_reference_scoring_together_inference,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def pytest_configure(config):
|
||||||
|
for fixture_name in [
|
||||||
|
"meta_reference_scoring_fireworks_inference",
|
||||||
|
"meta_reference_scoring_together_inference",
|
||||||
|
]:
|
||||||
|
config.addinivalue_line(
|
||||||
|
"markers",
|
||||||
|
f"{fixture_name}: marks tests as {fixture_name} specific",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def pytest_addoption(parser):
|
||||||
|
parser.addoption(
|
||||||
|
"--inference-model",
|
||||||
|
action="store",
|
||||||
|
default="Llama3.2-3B-Instruct",
|
||||||
|
help="Specify the inference model to use for testing",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def pytest_generate_tests(metafunc):
|
||||||
|
if "scoring_stack" in metafunc.fixturenames:
|
||||||
|
available_fixtures = {
|
||||||
|
"scoring": SCORING_FIXTURES,
|
||||||
|
"datasetio": DATASETIO_FIXTURES,
|
||||||
|
"inference": INFERENCE_FIXTURES,
|
||||||
|
}
|
||||||
|
combinations = (
|
||||||
|
get_provider_fixture_overrides(metafunc.config, available_fixtures)
|
||||||
|
or DEFAULT_PROVIDER_COMBINATIONS
|
||||||
|
)
|
||||||
|
metafunc.parametrize("scoring_stack", combinations, indirect=True)
|
60
llama_stack/providers/tests/scoring/fixtures.py
Normal file
60
llama_stack/providers/tests/scoring/fixtures.py
Normal file
|
@ -0,0 +1,60 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
import pytest_asyncio
|
||||||
|
|
||||||
|
from llama_stack.distribution.datatypes import Api, Provider
|
||||||
|
|
||||||
|
from llama_stack.providers.tests.resolver import resolve_impls_for_test_v2
|
||||||
|
from ..conftest import ProviderFixture, remote_stack_fixture
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture(scope="session")
|
||||||
|
def scoring_remote() -> ProviderFixture:
|
||||||
|
return remote_stack_fixture()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture(scope="session")
|
||||||
|
def scoring_meta_reference() -> ProviderFixture:
|
||||||
|
return ProviderFixture(
|
||||||
|
providers=[
|
||||||
|
Provider(
|
||||||
|
provider_id="meta-reference",
|
||||||
|
provider_type="meta-reference",
|
||||||
|
config={},
|
||||||
|
)
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
SCORING_FIXTURES = ["meta_reference", "remote"]
|
||||||
|
|
||||||
|
|
||||||
|
@pytest_asyncio.fixture(scope="session")
|
||||||
|
async def scoring_stack(request):
|
||||||
|
fixture_dict = request.param
|
||||||
|
|
||||||
|
providers = {}
|
||||||
|
provider_data = {}
|
||||||
|
for key in ["datasetio", "scoring", "inference"]:
|
||||||
|
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
|
||||||
|
providers[key] = fixture.providers
|
||||||
|
if fixture.provider_data:
|
||||||
|
provider_data.update(fixture.provider_data)
|
||||||
|
|
||||||
|
impls = await resolve_impls_for_test_v2(
|
||||||
|
[Api.scoring, Api.datasetio, Api.inference],
|
||||||
|
providers,
|
||||||
|
provider_data,
|
||||||
|
)
|
||||||
|
|
||||||
|
return (
|
||||||
|
impls[Api.scoring],
|
||||||
|
impls[Api.scoring_functions],
|
||||||
|
impls[Api.datasetio],
|
||||||
|
impls[Api.datasets],
|
||||||
|
)
|
|
@ -1,17 +0,0 @@
|
||||||
providers:
|
|
||||||
datasetio:
|
|
||||||
- provider_id: test-meta
|
|
||||||
provider_type: meta-reference
|
|
||||||
config: {}
|
|
||||||
scoring:
|
|
||||||
- provider_id: test-meta
|
|
||||||
provider_type: meta-reference
|
|
||||||
config: {}
|
|
||||||
- provider_id: test-braintrust
|
|
||||||
provider_type: braintrust
|
|
||||||
config: {}
|
|
||||||
inference:
|
|
||||||
- provider_id: tgi0
|
|
||||||
provider_type: remote::tgi
|
|
||||||
config:
|
|
||||||
url: http://127.0.0.1:5009
|
|
|
@ -3,150 +3,109 @@
|
||||||
#
|
#
|
||||||
# This source code is licensed under the terms described in the LICENSE file in
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
import pytest
|
|
||||||
import pytest_asyncio
|
|
||||||
|
|
||||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
|
||||||
from llama_stack.apis.datasetio import * # noqa: F403
|
import pytest
|
||||||
from llama_stack.distribution.datatypes import * # noqa: F403
|
|
||||||
|
from llama_stack.apis.scoring_functions import * # noqa: F403
|
||||||
|
|
||||||
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
|
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
|
||||||
from llama_stack.providers.tests.resolver import resolve_impls_for_test
|
|
||||||
|
|
||||||
# How to run this test:
|
# How to run this test:
|
||||||
#
|
#
|
||||||
# 1. Ensure you have a conda with the right dependencies installed. This is a bit tricky
|
# pytest llama_stack/providers/tests/scoring/test_scoring.py
|
||||||
# since it depends on the provider you are testing. On top of that you need
|
# -m "meta_reference"
|
||||||
# `pytest` and `pytest-asyncio` installed.
|
# -v -s --tb=short --disable-warnings
|
||||||
#
|
|
||||||
# 2. Copy and modify the provider_config_example.yaml depending on the provider you are testing.
|
|
||||||
#
|
|
||||||
# 3. Run:
|
|
||||||
#
|
|
||||||
# ```bash
|
|
||||||
# PROVIDER_ID=<your_provider> \
|
|
||||||
# PROVIDER_CONFIG=provider_config.yaml \
|
|
||||||
# pytest -s llama_stack/providers/tests/scoring/test_scoring.py \
|
|
||||||
# --tb=short --disable-warnings
|
|
||||||
# ```
|
|
||||||
|
|
||||||
|
|
||||||
@pytest_asyncio.fixture(scope="session")
|
class TestScoring:
|
||||||
async def scoring_settings():
|
@pytest.mark.asyncio
|
||||||
impls = await resolve_impls_for_test(
|
async def test_scoring_functions_list(self, scoring_stack):
|
||||||
Api.scoring, deps=[Api.datasetio, Api.inference]
|
# NOTE: this needs you to ensure that you are starting from a clean state
|
||||||
|
# but so far we don't have an unregister API unfortunately, so be careful
|
||||||
|
_, scoring_functions_impl, _, _ = scoring_stack
|
||||||
|
response = await scoring_functions_impl.list_scoring_functions()
|
||||||
|
assert isinstance(response, list)
|
||||||
|
assert len(response) > 0
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_scoring_score(self, scoring_stack):
|
||||||
|
scoring_impl, scoring_functions_impl, datasetio_impl, datasets_impl = (
|
||||||
|
scoring_stack
|
||||||
)
|
)
|
||||||
return {
|
|
||||||
"scoring_impl": impls[Api.scoring],
|
|
||||||
"scoring_functions_impl": impls[Api.scoring_functions],
|
|
||||||
"datasets_impl": impls[Api.datasets],
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
@pytest_asyncio.fixture(scope="session")
|
|
||||||
async def provider_scoring_functions():
|
|
||||||
return {
|
|
||||||
"meta-reference": {
|
|
||||||
"meta-reference::equality",
|
|
||||||
"meta-reference::subset_of",
|
|
||||||
"meta-reference::llm_as_judge_8b_correctness",
|
|
||||||
},
|
|
||||||
"braintrust": {
|
|
||||||
"braintrust::factuality",
|
|
||||||
"braintrust::answer-correctness",
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
|
||||||
async def test_scoring_functions_list(scoring_settings, provider_scoring_functions):
|
|
||||||
scoring_impl = scoring_settings["scoring_impl"]
|
|
||||||
scoring_functions_impl = scoring_settings["scoring_functions_impl"]
|
|
||||||
scoring_functions = await scoring_functions_impl.list_scoring_functions()
|
|
||||||
assert isinstance(scoring_functions, list)
|
|
||||||
assert len(scoring_functions) > 0
|
|
||||||
function_ids = [f.identifier for f in scoring_functions]
|
|
||||||
# get current provider_type we're testing
|
|
||||||
provider = scoring_impl.routing_table.get_provider_impl(function_ids[0])
|
|
||||||
provider_type = provider.__provider_spec__.provider_type
|
|
||||||
|
|
||||||
for x in provider_scoring_functions[provider_type]:
|
|
||||||
assert x in function_ids
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
|
||||||
async def test_scoring_functions_register(scoring_settings):
|
|
||||||
scoring_impl = scoring_settings["scoring_impl"]
|
|
||||||
scoring_functions_impl = scoring_settings["scoring_functions_impl"]
|
|
||||||
datasets_impl = scoring_settings["datasets_impl"]
|
|
||||||
|
|
||||||
# get current provider_type we're testing
|
|
||||||
scoring_functions = await scoring_functions_impl.list_scoring_functions()
|
|
||||||
function_ids = [f.identifier for f in scoring_functions]
|
|
||||||
provider = scoring_impl.routing_table.get_provider_impl(function_ids[0])
|
|
||||||
provider_type = provider.__provider_spec__.provider_type
|
|
||||||
if provider_type not in ("meta-reference"):
|
|
||||||
pytest.skip(
|
|
||||||
"Other scoring providers don't support registering scoring functions."
|
|
||||||
)
|
|
||||||
|
|
||||||
test_prompt = """Output a number between 0 to 10. Your answer must match the format \n Number: <answer>"""
|
|
||||||
# register the scoring function
|
|
||||||
await scoring_functions_impl.register_scoring_function(
|
|
||||||
ScoringFnDefWithProvider(
|
|
||||||
identifier="meta-reference::llm_as_judge_8b_random",
|
|
||||||
description="Llm As Judge Scoring Function",
|
|
||||||
parameters=[],
|
|
||||||
return_type=NumberType(),
|
|
||||||
context=LLMAsJudgeContext(
|
|
||||||
prompt_template=test_prompt,
|
|
||||||
judge_model="Llama3.1-8B-Instruct",
|
|
||||||
judge_score_regex=[r"Number: (\d+)"],
|
|
||||||
),
|
|
||||||
provider_id="test-meta",
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
scoring_functions = await scoring_functions_impl.list_scoring_functions()
|
|
||||||
assert isinstance(scoring_functions, list)
|
|
||||||
assert len(scoring_functions) > 0
|
|
||||||
function_ids = [f.identifier for f in scoring_functions]
|
|
||||||
assert "meta-reference::llm_as_judge_8b_random" in function_ids
|
|
||||||
|
|
||||||
# test score using newly registered scoring function
|
|
||||||
await register_dataset(datasets_impl)
|
await register_dataset(datasets_impl)
|
||||||
response = await datasets_impl.list_datasets()
|
response = await datasets_impl.list_datasets()
|
||||||
assert len(response) == 1
|
assert len(response) == 1
|
||||||
response = await scoring_impl.score_batch(
|
|
||||||
dataset_id=response[0].identifier,
|
# scoring individual rows
|
||||||
scoring_functions=[
|
rows = await datasetio_impl.get_rows_paginated(
|
||||||
"meta-reference::llm_as_judge_8b_random",
|
dataset_id="test_dataset",
|
||||||
],
|
rows_in_page=3,
|
||||||
)
|
)
|
||||||
assert "meta-reference::llm_as_judge_8b_random" in response.results
|
assert len(rows.rows) == 3
|
||||||
|
|
||||||
|
scoring_functions = {
|
||||||
@pytest.mark.asyncio
|
"meta-reference::llm_as_judge_8b_correctness": None,
|
||||||
async def test_scoring_score(scoring_settings, provider_scoring_functions):
|
"meta-reference::equality": None,
|
||||||
scoring_impl = scoring_settings["scoring_impl"]
|
}
|
||||||
datasets_impl = scoring_settings["datasets_impl"]
|
response = await scoring_impl.score(
|
||||||
scoring_functions_impl = scoring_settings["scoring_functions_impl"]
|
input_rows=rows.rows,
|
||||||
await register_dataset(datasets_impl)
|
scoring_functions=scoring_functions,
|
||||||
|
|
||||||
response = await datasets_impl.list_datasets()
|
|
||||||
assert len(response) == 1
|
|
||||||
|
|
||||||
# get current provider_type we're testing
|
|
||||||
scoring_functions = await scoring_functions_impl.list_scoring_functions()
|
|
||||||
function_ids = [f.identifier for f in scoring_functions]
|
|
||||||
provider = scoring_impl.routing_table.get_provider_impl(function_ids[0])
|
|
||||||
provider_type = provider.__provider_spec__.provider_type
|
|
||||||
|
|
||||||
response = await scoring_impl.score_batch(
|
|
||||||
dataset_id=response[0].identifier,
|
|
||||||
scoring_functions=list(provider_scoring_functions[provider_type]),
|
|
||||||
)
|
)
|
||||||
|
assert len(response.results) == len(scoring_functions)
|
||||||
assert len(response.results) == len(provider_scoring_functions[provider_type])
|
for x in scoring_functions:
|
||||||
for x in provider_scoring_functions[provider_type]:
|
|
||||||
assert x in response.results
|
assert x in response.results
|
||||||
|
assert len(response.results[x].score_rows) == len(rows.rows)
|
||||||
|
|
||||||
|
# score batch
|
||||||
|
response = await scoring_impl.score_batch(
|
||||||
|
dataset_id="test_dataset",
|
||||||
|
scoring_functions=scoring_functions,
|
||||||
|
)
|
||||||
|
assert len(response.results) == len(scoring_functions)
|
||||||
|
for x in scoring_functions:
|
||||||
|
assert x in response.results
|
||||||
|
assert len(response.results[x].score_rows) == 5
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_scoring_score_with_params(self, scoring_stack):
|
||||||
|
scoring_impl, scoring_functions_impl, datasetio_impl, datasets_impl = (
|
||||||
|
scoring_stack
|
||||||
|
)
|
||||||
|
await register_dataset(datasets_impl)
|
||||||
|
response = await datasets_impl.list_datasets()
|
||||||
|
assert len(response) == 1
|
||||||
|
|
||||||
|
# scoring individual rows
|
||||||
|
rows = await datasetio_impl.get_rows_paginated(
|
||||||
|
dataset_id="test_dataset",
|
||||||
|
rows_in_page=3,
|
||||||
|
)
|
||||||
|
assert len(rows.rows) == 3
|
||||||
|
|
||||||
|
scoring_functions = {
|
||||||
|
"meta-reference::llm_as_judge_8b_correctness": LLMAsJudgeScoringFnParams(
|
||||||
|
judge_model="Llama3.1-405B-Instruct",
|
||||||
|
prompt_template="Output a number response in the following format: Score: <number>, where <number> is the number between 0 and 9.",
|
||||||
|
judge_score_regexes=[r"Score: (\d+)"],
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
response = await scoring_impl.score(
|
||||||
|
input_rows=rows.rows,
|
||||||
|
scoring_functions=scoring_functions,
|
||||||
|
)
|
||||||
|
assert len(response.results) == len(scoring_functions)
|
||||||
|
for x in scoring_functions:
|
||||||
|
assert x in response.results
|
||||||
|
assert len(response.results[x].score_rows) == len(rows.rows)
|
||||||
|
|
||||||
|
# score batch
|
||||||
|
response = await scoring_impl.score_batch(
|
||||||
|
dataset_id="test_dataset",
|
||||||
|
scoring_functions=scoring_functions,
|
||||||
|
)
|
||||||
|
assert len(response.results) == len(scoring_functions)
|
||||||
|
for x in scoring_functions:
|
||||||
|
assert x in response.results
|
||||||
|
assert len(response.results[x].score_rows) == 5
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue