move nvidia to remote datasetio

This commit is contained in:
raspawar 2025-03-26 13:46:37 +05:30
parent 0a2af0e2f8
commit 63825eb493
10 changed files with 47 additions and 96 deletions

View file

@ -35,10 +35,10 @@ def builtin_automatically_routed_apis() -> List[AutoRoutedApiInfo]:
routing_table_api=Api.vector_dbs,
router_api=Api.vector_io,
),
# AutoRoutedApiInfo(
# routing_table_api=Api.datasets,
# router_api=Api.datasetio,
# ),
AutoRoutedApiInfo(
routing_table_api=Api.datasets,
router_api=Api.datasetio,
),
AutoRoutedApiInfo(
routing_table_api=Api.scoring_functions,
router_api=Api.scoring,

View file

@ -36,4 +36,15 @@ def available_providers() -> List[ProviderSpec]:
config_class="llama_stack.providers.remote.datasetio.huggingface.HuggingfaceDatasetIOConfig",
),
),
remote_provider_spec(
api=Api.datasetio,
adapter=AdapterSpec(
adapter_type="nvidia",
pip_packages=[
"datasets",
],
module="llama_stack.providers.remote.datasetio.nvidia",
config_class="llama_stack.providers.remote.datasetio.nvidia.NvidiaDatasetIOConfig",
),
),
]

View file

@ -1,30 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List
from llama_stack.providers.datatypes import (
AdapterSpec,
Api,
ProviderSpec,
remote_provider_spec,
)
def available_providers() -> List[ProviderSpec]:
return [
remote_provider_spec(
api=Api.datasets,
adapter=AdapterSpec(
adapter_type="nvidia",
pip_packages=[
"datasets",
],
module="llama_stack.providers.remote.datasets.nvidia",
config_class="llama_stack.providers.remote.datasets.nvidia.NvidiaDatasetConfig",
),
),
]

View file

@ -4,20 +4,20 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .config import NvidiaDatasetConfig
from .config import NvidiaDatasetIOConfig
async def get_adapter_impl(
config: NvidiaDatasetConfig,
config: NvidiaDatasetIOConfig,
_deps,
):
from .datasets import NvidiaDatasetAdapter
from .datasetio import NvidiaDatasetIOAdapter
if not isinstance(config, NvidiaDatasetConfig):
if not isinstance(config, NvidiaDatasetIOConfig):
raise RuntimeError(f"Unexpected config type: {type(config)}")
impl = NvidiaDatasetAdapter(config)
impl = NvidiaDatasetIOAdapter(config)
return impl
__all__ = ["get_adapter_impl", "NvidiaDatasetAdapter"]
__all__ = ["get_adapter_impl", "NvidiaDatasetIOAdapter"]

View file

@ -11,8 +11,8 @@ from typing import Any, Dict, Optional
from pydantic import BaseModel, Field
class NvidiaDatasetConfig(BaseModel):
"""Configuration for NVIDIA Dataset implementation."""
class NvidiaDatasetIOConfig(BaseModel):
"""Configuration for NVIDIA DatasetIO implementation."""
api_key: Optional[str] = Field(
default_factory=lambda: os.getenv("NVIDIA_API_KEY"),

View file

@ -4,7 +4,6 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from datetime import datetime
from typing import Any, Dict, Literal, Optional
import aiohttp
@ -15,15 +14,15 @@ from llama_stack.apis.datasets.datasets import Dataset, ListDatasetsResponse
from llama_stack.apis.resource import ResourceType
from llama_stack.schema_utils import webmethod
from .config import NvidiaDatasetConfig
from .config import NvidiaDatasetIOConfig
class NvidiaDatasetAdapter:
"""Nvidia NeMo Dataset API."""
class NvidiaDatasetIOAdapter:
"""Nvidia NeMo DatasetIO API."""
type: Literal[ResourceType.dataset.value] = ResourceType.dataset.value
def __init__(self, config: NvidiaDatasetConfig):
def __init__(self, config: NvidiaDatasetIOConfig):
self.config = config
self.headers = {}
if config.api_key:
@ -86,48 +85,13 @@ class NvidiaDatasetAdapter:
self,
dataset_id: str,
) -> Optional[Dataset]:
dataset_id, namespace = dataset_id.split(":")
dataset = await self._make_request(
method="GET",
path=f"/v1/datasets/{namespace}/{dataset_id}",
)
created_at = datetime.fromisoformat(dataset.pop("created_at")) if "created_at" in dataset else datetime.now()
identifier = dataset.pop("name")
url = URL(uri=dataset.pop("files_url"))
return Dataset(
identifier=identifier,
provider_id="nvidia", # confirm this
url=url,
dataset_schema={}, # ToDo: get schema from the dataset
created_at=created_at,
metadata=dataset,
)
raise NotImplementedError("Not implemented")
@webmethod(route="/datasets", method="GET")
async def list_datasets(
self,
) -> ListDatasetsResponse:
## ToDo: add pagination
response = await self._make_request(method="GET", path="/v1/datasets")
datasets = []
for dataset in response["data"]:
created_at = (
datetime.fromisoformat(dataset.pop("created_at")) if "created_at" in dataset else datetime.now()
)
identifier = dataset.pop("name")
url = URL(uri=dataset.pop("files_url"))
datasets.append(
Dataset(
identifier=identifier,
provider_id="nvidia", # confirm this
url=url,
dataset_schema={},
created_at=created_at,
metadata=dataset,
)
) # add remaining fields as metadata
return ListDatasetsResponse(data=datasets)
raise NotImplementedError("Not implemented")
@webmethod(route="/datasets/{dataset_id:path}", method="POST")
async def update_dataset(
@ -138,11 +102,13 @@ class NvidiaDatasetAdapter:
provider_dataset_id: Optional[str] = None,
provider_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
) -> None: ...
) -> None:
raise NotImplementedError("Not implemented")
@webmethod(route="/datasets/{dataset_id:path}", method="DELETE")
async def unregister_dataset(
self,
dataset_id: str,
namespace: Optional[str] = "default",
) -> None: ...
) -> None:
raise NotImplementedError("Not implemented")

View file

@ -16,7 +16,6 @@ distribution_spec:
- inline::meta-reference
datasetio:
- inline::localfs
datasets:
- remote::nvidia
scoring:
- inline::basic

View file

@ -7,7 +7,7 @@
from pathlib import Path
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput, ToolGroupInput
from llama_stack.providers.remote.datasets.nvidia import NvidiaDatasetConfig
from llama_stack.providers.remote.datasetio.nvidia import NvidiaDatasetIOConfig
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
from llama_stack.providers.remote.inference.nvidia.models import MODEL_ENTRIES
from llama_stack.providers.remote.post_training.nvidia import NvidiaPostTrainingConfig
@ -24,10 +24,15 @@ def get_distribution_template() -> DistributionTemplate:
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
"datasetio": ["inline::localfs"],
"datasets": ["remote::nvidia"],
"scoring": ["inline::basic"],
"tool_runtime": ["inline::rag-runtime"],
"datasetio": ["remote::huggingface", "inline::localfs", "remote::nvidia"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::code-interpreter",
"inline::rag-runtime",
"remote::model-context-protocol",
],
}
inference_provider = Provider(
@ -42,11 +47,12 @@ def get_distribution_template() -> DistributionTemplate:
config=NvidiaPostTrainingConfig.sample_run_config(),
)
datasets_provider = Provider(
datasetio_provider = Provider(
provider_id="nvidia",
provider_type="remote::nvidia",
config=NvidiaDatasetConfig.sample_run_config(),
config=NvidiaDatasetIOConfig.sample_run_config(),
)
safety_provider = Provider(
provider_id="nvidia",
provider_type="remote::nvidia",
@ -85,7 +91,7 @@ def get_distribution_template() -> DistributionTemplate:
provider_overrides={
"inference": [inference_provider],
"post_training": [post_training_provider],
"datasets": [datasets_provider],
"datasetio": [datasetio_provider],
},
default_models=default_models,
default_tool_groups=default_tool_groups,

View file

@ -59,7 +59,6 @@ providers:
- provider_id: localfs
provider_type: inline::localfs
config: {}
datasets:
- provider_id: nvidia
provider_type: remote::nvidia
config: {}