mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-28 08:41:59 +00:00
Merge branch 'main' into fix/nvidia-launch-customization
This commit is contained in:
commit
6659ed995a
53 changed files with 2203 additions and 217 deletions
|
|
@ -136,12 +136,13 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
|
|||
)
|
||||
|
||||
image_type = prompt(
|
||||
f"> Enter the image type you want your Llama Stack to be built as ({' or '.join(e.value for e in ImageType)}): ",
|
||||
"> Enter the image type you want your Llama Stack to be built as (use <TAB> to see options): ",
|
||||
completer=WordCompleter([e.value for e in ImageType]),
|
||||
complete_while_typing=True,
|
||||
validator=Validator.from_callable(
|
||||
lambda x: x in [e.value for e in ImageType],
|
||||
error_message=f"Invalid image type, please enter {' or '.join(e.value for e in ImageType)}",
|
||||
error_message="Invalid image type. Use <TAB> to see options",
|
||||
),
|
||||
default=ImageType.CONDA.value,
|
||||
)
|
||||
|
||||
if image_type == ImageType.CONDA.value:
|
||||
|
|
|
|||
|
|
@ -166,14 +166,16 @@ async def maybe_await(value):
|
|||
|
||||
|
||||
async def sse_generator(event_gen_coroutine):
|
||||
event_gen = await event_gen_coroutine
|
||||
event_gen = None
|
||||
try:
|
||||
event_gen = await event_gen_coroutine
|
||||
async for item in event_gen:
|
||||
yield create_sse_event(item)
|
||||
await asyncio.sleep(0.01)
|
||||
except asyncio.CancelledError:
|
||||
logger.info("Generator cancelled")
|
||||
await event_gen.aclose()
|
||||
if event_gen:
|
||||
await event_gen.aclose()
|
||||
except Exception as e:
|
||||
logger.exception("Error in sse_generator")
|
||||
yield create_sse_event(
|
||||
|
|
@ -459,6 +461,7 @@ def main(args: Optional[argparse.Namespace] = None):
|
|||
raise ValueError(f"Could not find method {endpoint.name} on {impl}!!")
|
||||
|
||||
impl_method = getattr(impl, endpoint.name)
|
||||
logger.debug(f"{endpoint.method.upper()} {endpoint.route}")
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore", category=UserWarning, module="pydantic._internal._fields")
|
||||
|
|
|
|||
|
|
@ -4,14 +4,23 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import enum
|
||||
import json
|
||||
import uuid
|
||||
|
||||
import streamlit as st
|
||||
from llama_stack_client import Agent
|
||||
from llama_stack_client.lib.agents.react.agent import ReActAgent
|
||||
from llama_stack_client.lib.agents.react.tool_parser import ReActOutput
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
|
||||
|
||||
class AgentType(enum.Enum):
|
||||
REGULAR = "Regular"
|
||||
REACT = "ReAct"
|
||||
|
||||
|
||||
def tool_chat_page():
|
||||
st.title("🛠 Tools")
|
||||
|
||||
|
|
@ -23,6 +32,7 @@ def tool_chat_page():
|
|||
tool_groups_list = [tool_group.identifier for tool_group in tool_groups]
|
||||
mcp_tools_list = [tool for tool in tool_groups_list if tool.startswith("mcp::")]
|
||||
builtin_tools_list = [tool for tool in tool_groups_list if not tool.startswith("mcp::")]
|
||||
selected_vector_dbs = []
|
||||
|
||||
def reset_agent():
|
||||
st.session_state.clear()
|
||||
|
|
@ -66,25 +76,36 @@ def tool_chat_page():
|
|||
|
||||
toolgroup_selection.extend(mcp_selection)
|
||||
|
||||
active_tool_list = []
|
||||
for toolgroup_id in toolgroup_selection:
|
||||
active_tool_list.extend(
|
||||
[
|
||||
f"{''.join(toolgroup_id.split('::')[1:])}:{t.identifier}"
|
||||
for t in client.tools.list(toolgroup_id=toolgroup_id)
|
||||
]
|
||||
)
|
||||
grouped_tools = {}
|
||||
total_tools = 0
|
||||
|
||||
st.markdown(f"Active Tools: 🛠 {len(active_tool_list)}", help="List of currently active tools.")
|
||||
st.json(active_tool_list)
|
||||
for toolgroup_id in toolgroup_selection:
|
||||
tools = client.tools.list(toolgroup_id=toolgroup_id)
|
||||
grouped_tools[toolgroup_id] = [tool.identifier for tool in tools]
|
||||
total_tools += len(tools)
|
||||
|
||||
st.markdown(f"Active Tools: 🛠 {total_tools}")
|
||||
|
||||
for group_id, tools in grouped_tools.items():
|
||||
with st.expander(f"🔧 Tools from `{group_id}`"):
|
||||
for idx, tool in enumerate(tools, start=1):
|
||||
st.markdown(f"{idx}. `{tool.split(':')[-1]}`")
|
||||
|
||||
st.subheader("Agent Configurations")
|
||||
st.subheader("Agent Type")
|
||||
agent_type = st.radio(
|
||||
"Select Agent Type",
|
||||
[AgentType.REGULAR, AgentType.REACT],
|
||||
format_func=lambda x: x.value,
|
||||
on_change=reset_agent,
|
||||
)
|
||||
|
||||
max_tokens = st.slider(
|
||||
"Max Tokens",
|
||||
min_value=0,
|
||||
max_value=4096,
|
||||
value=512,
|
||||
step=1,
|
||||
step=64,
|
||||
help="The maximum number of tokens to generate",
|
||||
on_change=reset_agent,
|
||||
)
|
||||
|
|
@ -101,13 +122,27 @@ def tool_chat_page():
|
|||
|
||||
@st.cache_resource
|
||||
def create_agent():
|
||||
return Agent(
|
||||
client,
|
||||
model=model,
|
||||
instructions="You are a helpful assistant. When you use a tool always respond with a summary of the result.",
|
||||
tools=toolgroup_selection,
|
||||
sampling_params={"strategy": {"type": "greedy"}, "max_tokens": max_tokens},
|
||||
)
|
||||
if "agent_type" in st.session_state and st.session_state.agent_type == AgentType.REACT:
|
||||
return ReActAgent(
|
||||
client=client,
|
||||
model=model,
|
||||
tools=toolgroup_selection,
|
||||
response_format={
|
||||
"type": "json_schema",
|
||||
"json_schema": ReActOutput.model_json_schema(),
|
||||
},
|
||||
sampling_params={"strategy": {"type": "greedy"}, "max_tokens": max_tokens},
|
||||
)
|
||||
else:
|
||||
return Agent(
|
||||
client,
|
||||
model=model,
|
||||
instructions="You are a helpful assistant. When you use a tool always respond with a summary of the result.",
|
||||
tools=toolgroup_selection,
|
||||
sampling_params={"strategy": {"type": "greedy"}, "max_tokens": max_tokens},
|
||||
)
|
||||
|
||||
st.session_state.agent_type = agent_type
|
||||
|
||||
agent = create_agent()
|
||||
|
||||
|
|
@ -136,6 +171,158 @@ def tool_chat_page():
|
|||
)
|
||||
|
||||
def response_generator(turn_response):
|
||||
if st.session_state.get("agent_type") == AgentType.REACT:
|
||||
return _handle_react_response(turn_response)
|
||||
else:
|
||||
return _handle_regular_response(turn_response)
|
||||
|
||||
def _handle_react_response(turn_response):
|
||||
current_step_content = ""
|
||||
final_answer = None
|
||||
tool_results = []
|
||||
|
||||
for response in turn_response:
|
||||
if not hasattr(response.event, "payload"):
|
||||
yield (
|
||||
"\n\n🚨 :red[_Llama Stack server Error:_]\n"
|
||||
"The response received is missing an expected `payload` attribute.\n"
|
||||
"This could indicate a malformed response or an internal issue within the server.\n\n"
|
||||
f"Error details: {response}"
|
||||
)
|
||||
return
|
||||
|
||||
payload = response.event.payload
|
||||
|
||||
if payload.event_type == "step_progress" and hasattr(payload.delta, "text"):
|
||||
current_step_content += payload.delta.text
|
||||
continue
|
||||
|
||||
if payload.event_type == "step_complete":
|
||||
step_details = payload.step_details
|
||||
|
||||
if step_details.step_type == "inference":
|
||||
yield from _process_inference_step(current_step_content, tool_results, final_answer)
|
||||
current_step_content = ""
|
||||
elif step_details.step_type == "tool_execution":
|
||||
tool_results = _process_tool_execution(step_details, tool_results)
|
||||
current_step_content = ""
|
||||
else:
|
||||
current_step_content = ""
|
||||
|
||||
if not final_answer and tool_results:
|
||||
yield from _format_tool_results_summary(tool_results)
|
||||
|
||||
def _process_inference_step(current_step_content, tool_results, final_answer):
|
||||
try:
|
||||
react_output_data = json.loads(current_step_content)
|
||||
thought = react_output_data.get("thought")
|
||||
action = react_output_data.get("action")
|
||||
answer = react_output_data.get("answer")
|
||||
|
||||
if answer and answer != "null" and answer is not None:
|
||||
final_answer = answer
|
||||
|
||||
if thought:
|
||||
with st.expander("🤔 Thinking...", expanded=False):
|
||||
st.markdown(f":grey[__{thought}__]")
|
||||
|
||||
if action and isinstance(action, dict):
|
||||
tool_name = action.get("tool_name")
|
||||
tool_params = action.get("tool_params")
|
||||
with st.expander(f'🛠 Action: Using tool "{tool_name}"', expanded=False):
|
||||
st.json(tool_params)
|
||||
|
||||
if answer and answer != "null" and answer is not None:
|
||||
yield f"\n\n✅ **Final Answer:**\n{answer}"
|
||||
|
||||
except json.JSONDecodeError:
|
||||
yield f"\n\nFailed to parse ReAct step content:\n```json\n{current_step_content}\n```"
|
||||
except Exception as e:
|
||||
yield f"\n\nFailed to process ReAct step: {e}\n```json\n{current_step_content}\n```"
|
||||
|
||||
return final_answer
|
||||
|
||||
def _process_tool_execution(step_details, tool_results):
|
||||
try:
|
||||
if hasattr(step_details, "tool_responses") and step_details.tool_responses:
|
||||
for tool_response in step_details.tool_responses:
|
||||
tool_name = tool_response.tool_name
|
||||
content = tool_response.content
|
||||
tool_results.append((tool_name, content))
|
||||
with st.expander(f'⚙️ Observation (Result from "{tool_name}")', expanded=False):
|
||||
try:
|
||||
parsed_content = json.loads(content)
|
||||
st.json(parsed_content)
|
||||
except json.JSONDecodeError:
|
||||
st.code(content, language=None)
|
||||
else:
|
||||
with st.expander("⚙️ Observation", expanded=False):
|
||||
st.markdown(":grey[_Tool execution step completed, but no response data found._]")
|
||||
except Exception as e:
|
||||
with st.expander("⚙️ Error in Tool Execution", expanded=False):
|
||||
st.markdown(f":red[_Error processing tool execution: {str(e)}_]")
|
||||
|
||||
return tool_results
|
||||
|
||||
def _format_tool_results_summary(tool_results):
|
||||
yield "\n\n**Here's what I found:**\n"
|
||||
for tool_name, content in tool_results:
|
||||
try:
|
||||
parsed_content = json.loads(content)
|
||||
|
||||
if tool_name == "web_search" and "top_k" in parsed_content:
|
||||
yield from _format_web_search_results(parsed_content)
|
||||
elif "results" in parsed_content and isinstance(parsed_content["results"], list):
|
||||
yield from _format_results_list(parsed_content["results"])
|
||||
elif isinstance(parsed_content, dict) and len(parsed_content) > 0:
|
||||
yield from _format_dict_results(parsed_content)
|
||||
elif isinstance(parsed_content, list) and len(parsed_content) > 0:
|
||||
yield from _format_list_results(parsed_content)
|
||||
except json.JSONDecodeError:
|
||||
yield f"\n**{tool_name}** was used but returned complex data. Check the observation for details.\n"
|
||||
except (TypeError, AttributeError, KeyError, IndexError) as e:
|
||||
print(f"Error processing {tool_name} result: {type(e).__name__}: {e}")
|
||||
|
||||
def _format_web_search_results(parsed_content):
|
||||
for i, result in enumerate(parsed_content["top_k"], 1):
|
||||
if i <= 3:
|
||||
title = result.get("title", "Untitled")
|
||||
url = result.get("url", "")
|
||||
content_text = result.get("content", "").strip()
|
||||
yield f"\n- **{title}**\n {content_text}\n [Source]({url})\n"
|
||||
|
||||
def _format_results_list(results):
|
||||
for i, result in enumerate(results, 1):
|
||||
if i <= 3:
|
||||
if isinstance(result, dict):
|
||||
name = result.get("name", result.get("title", "Result " + str(i)))
|
||||
description = result.get("description", result.get("content", result.get("summary", "")))
|
||||
yield f"\n- **{name}**\n {description}\n"
|
||||
else:
|
||||
yield f"\n- {result}\n"
|
||||
|
||||
def _format_dict_results(parsed_content):
|
||||
yield "\n```\n"
|
||||
for key, value in list(parsed_content.items())[:5]:
|
||||
if isinstance(value, str) and len(value) < 100:
|
||||
yield f"{key}: {value}\n"
|
||||
else:
|
||||
yield f"{key}: [Complex data]\n"
|
||||
yield "```\n"
|
||||
|
||||
def _format_list_results(parsed_content):
|
||||
yield "\n"
|
||||
for _, item in enumerate(parsed_content[:3], 1):
|
||||
if isinstance(item, str):
|
||||
yield f"- {item}\n"
|
||||
elif isinstance(item, dict) and "text" in item:
|
||||
yield f"- {item['text']}\n"
|
||||
elif isinstance(item, dict) and len(item) > 0:
|
||||
first_value = next(iter(item.values()))
|
||||
if isinstance(first_value, str) and len(first_value) < 100:
|
||||
yield f"- {first_value}\n"
|
||||
|
||||
def _handle_regular_response(turn_response):
|
||||
for response in turn_response:
|
||||
if hasattr(response.event, "payload"):
|
||||
print(response.event.payload)
|
||||
|
|
@ -153,9 +340,9 @@ def tool_chat_page():
|
|||
yield f"Error occurred in the Llama Stack Cluster: {response}"
|
||||
|
||||
with st.chat_message("assistant"):
|
||||
response = st.write_stream(response_generator(turn_response))
|
||||
response_content = st.write_stream(response_generator(turn_response))
|
||||
|
||||
st.session_state.messages.append({"role": "assistant", "content": response})
|
||||
st.session_state.messages.append({"role": "assistant", "content": response_content})
|
||||
|
||||
|
||||
tool_chat_page()
|
||||
|
|
|
|||
|
|
@ -0,0 +1,144 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# top-level folder for each specific model found within the models/ directory at
|
||||
# the top-level of this source tree.
|
||||
|
||||
import textwrap
|
||||
from typing import List, Optional
|
||||
|
||||
from llama_stack.apis.inference import ToolDefinition, ToolParamDefinition
|
||||
from llama_stack.models.llama.llama3.prompt_templates.base import (
|
||||
PromptTemplate,
|
||||
PromptTemplateGeneratorBase,
|
||||
)
|
||||
|
||||
|
||||
class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801
|
||||
DEFAULT_PROMPT = textwrap.dedent(
|
||||
"""
|
||||
You are a helpful assistant and an expert in function composition. You can answer general questions using your internal knowledge OR invoke functions when necessary. Follow these strict guidelines:
|
||||
|
||||
1. FUNCTION CALLS:
|
||||
- ONLY use functions that are EXPLICITLY listed in the function list below
|
||||
- If NO functions are listed (empty function list []), respond ONLY with internal knowledge or "I don't have access to [Unavailable service] information"
|
||||
- If a function is not in the list, respond ONLY with internal knowledge or "I don't have access to [Unavailable service] information"
|
||||
- If ALL required parameters are present AND the query EXACTLY matches a listed function's purpose: output ONLY the function call(s)
|
||||
- Use exact format: [func_name1(param1=value1, param2=value2), func_name2(...)]
|
||||
Examples:
|
||||
CORRECT: [get_weather(location="Vancouver"), calculate_route(start="Boston", end="New York")] <- Only if get_weather and calculate_route are in function list
|
||||
INCORRECT: get_weather(location="New York")
|
||||
INCORRECT: Let me check the weather: [get_weather(location="New York")]
|
||||
INCORRECT: [get_events(location="Singapore")] <- If function not in list
|
||||
|
||||
2. RESPONSE RULES:
|
||||
- For pure function requests matching a listed function: ONLY output the function call(s)
|
||||
- For knowledge questions: ONLY output text
|
||||
- For missing parameters: ONLY request the specific missing parameters
|
||||
- For unavailable services (not in function list): output ONLY with internal knowledge or "I don't have access to [Unavailable service] information". Do NOT execute a function call.
|
||||
- If the query asks for information beyond what a listed function provides: output ONLY with internal knowledge about your limitations
|
||||
- NEVER combine text and function calls in the same response
|
||||
- NEVER suggest alternative functions when the requested service is unavailable
|
||||
- NEVER create or invent new functions not listed below
|
||||
|
||||
3. STRICT BOUNDARIES:
|
||||
- ONLY use functions from the list below - no exceptions
|
||||
- NEVER use a function as an alternative to unavailable information
|
||||
- NEVER call functions not present in the function list
|
||||
- NEVER add explanatory text to function calls
|
||||
- NEVER respond with empty brackets
|
||||
- Use proper Python/JSON syntax for function calls
|
||||
- Check the function list carefully before responding
|
||||
|
||||
4. TOOL RESPONSE HANDLING:
|
||||
- When receiving tool responses: provide concise, natural language responses
|
||||
- Don't repeat tool response verbatim
|
||||
- Don't add supplementary information
|
||||
|
||||
|
||||
{{ function_description }}
|
||||
""".strip("\n")
|
||||
)
|
||||
|
||||
def gen(self, custom_tools: List[ToolDefinition], system_prompt: Optional[str] = None) -> PromptTemplate:
|
||||
system_prompt = system_prompt or self.DEFAULT_PROMPT
|
||||
return PromptTemplate(
|
||||
system_prompt,
|
||||
{"function_description": self._gen_function_description(custom_tools)},
|
||||
)
|
||||
|
||||
def _gen_function_description(self, custom_tools: List[ToolDefinition]) -> PromptTemplate:
|
||||
template_str = textwrap.dedent(
|
||||
"""
|
||||
Here is a list of functions in JSON format that you can invoke.
|
||||
|
||||
[
|
||||
{% for t in tools -%}
|
||||
{# manually setting up JSON because jinja sorts keys in unexpected ways -#}
|
||||
{%- set tname = t.tool_name -%}
|
||||
{%- set tdesc = t.description -%}
|
||||
{%- set tparams = t.parameters -%}
|
||||
{%- set required_params = [] -%}
|
||||
{%- for name, param in tparams.items() if param.required == true -%}
|
||||
{%- set _ = required_params.append(name) -%}
|
||||
{%- endfor -%}
|
||||
{
|
||||
"name": "{{tname}}",
|
||||
"description": "{{tdesc}}",
|
||||
"parameters": {
|
||||
"type": "dict",
|
||||
"required": {{ required_params | tojson }},
|
||||
"properties": {
|
||||
{%- for name, param in tparams.items() %}
|
||||
"{{name}}": {
|
||||
"type": "{{param.param_type}}",
|
||||
"description": "{{param.description}}"{% if param.default %},
|
||||
"default": "{{param.default}}"{% endif %}
|
||||
}{% if not loop.last %},{% endif %}
|
||||
{%- endfor %}
|
||||
}
|
||||
}
|
||||
}{% if not loop.last %},
|
||||
{% endif -%}
|
||||
{%- endfor %}
|
||||
]
|
||||
|
||||
You can answer general questions or invoke tools when necessary.
|
||||
In addition to tool calls, you should also augment your responses by using the tool outputs.
|
||||
|
||||
"""
|
||||
)
|
||||
return PromptTemplate(
|
||||
template_str.strip("\n"),
|
||||
{"tools": [t.model_dump() for t in custom_tools]},
|
||||
).render()
|
||||
|
||||
def data_examples(self) -> List[List[ToolDefinition]]:
|
||||
return [
|
||||
[
|
||||
ToolDefinition(
|
||||
tool_name="get_weather",
|
||||
description="Get weather info for places",
|
||||
parameters={
|
||||
"city": ToolParamDefinition(
|
||||
param_type="string",
|
||||
description="The name of the city to get the weather for",
|
||||
required=True,
|
||||
),
|
||||
"metric": ToolParamDefinition(
|
||||
param_type="string",
|
||||
description="The metric for weather. Options are: celsius, fahrenheit",
|
||||
required=False,
|
||||
default="celsius",
|
||||
),
|
||||
},
|
||||
),
|
||||
]
|
||||
]
|
||||
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
from typing import List
|
||||
|
||||
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec
|
||||
from llama_stack.providers.datatypes import AdapterSpec, Api, InlineProviderSpec, ProviderSpec, remote_provider_spec
|
||||
|
||||
|
||||
def available_providers() -> List[ProviderSpec]:
|
||||
|
|
@ -25,4 +25,22 @@ def available_providers() -> List[ProviderSpec]:
|
|||
Api.agents,
|
||||
],
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.eval,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="nvidia",
|
||||
pip_packages=[
|
||||
"requests",
|
||||
],
|
||||
module="llama_stack.providers.remote.eval.nvidia",
|
||||
config_class="llama_stack.providers.remote.eval.nvidia.NVIDIAEvalConfig",
|
||||
),
|
||||
api_dependencies=[
|
||||
Api.datasetio,
|
||||
Api.datasets,
|
||||
Api.scoring,
|
||||
Api.inference,
|
||||
Api.agents,
|
||||
],
|
||||
),
|
||||
]
|
||||
|
|
|
|||
|
|
@ -288,4 +288,14 @@ def available_providers() -> List[ProviderSpec]:
|
|||
provider_data_validator="llama_stack.providers.remote.inference.passthrough.PassthroughProviderDataValidator",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="watsonx",
|
||||
pip_packages=["ibm_watson_machine_learning"],
|
||||
module="llama_stack.providers.remote.inference.watsonx",
|
||||
config_class="llama_stack.providers.remote.inference.watsonx.WatsonXConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.watsonx.WatsonXProviderDataValidator",
|
||||
),
|
||||
),
|
||||
]
|
||||
|
|
|
|||
5
llama_stack/providers/remote/eval/__init__.py
Normal file
5
llama_stack/providers/remote/eval/__init__.py
Normal file
|
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
134
llama_stack/providers/remote/eval/nvidia/README.md
Normal file
134
llama_stack/providers/remote/eval/nvidia/README.md
Normal file
|
|
@ -0,0 +1,134 @@
|
|||
# NVIDIA NeMo Evaluator Eval Provider
|
||||
|
||||
|
||||
## Overview
|
||||
|
||||
For the first integration, Benchmarks are mapped to Evaluation Configs on in the NeMo Evaluator. The full evaluation config object is provided as part of the meta-data. The `dataset_id` and `scoring_functions` are not used.
|
||||
|
||||
Below are a few examples of how to register a benchmark, which in turn will create an evaluation config in NeMo Evaluator and how to trigger an evaluation.
|
||||
|
||||
### Example for register an academic benchmark
|
||||
|
||||
```
|
||||
POST /eval/benchmarks
|
||||
```
|
||||
```json
|
||||
{
|
||||
"benchmark_id": "mmlu",
|
||||
"dataset_id": "",
|
||||
"scoring_functions": [],
|
||||
"metadata": {
|
||||
"type": "mmlu"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Example for register a custom evaluation
|
||||
|
||||
```
|
||||
POST /eval/benchmarks
|
||||
```
|
||||
```json
|
||||
{
|
||||
"benchmark_id": "my-custom-benchmark",
|
||||
"dataset_id": "",
|
||||
"scoring_functions": [],
|
||||
"metadata": {
|
||||
"type": "custom",
|
||||
"params": {
|
||||
"parallelism": 8
|
||||
},
|
||||
"tasks": {
|
||||
"qa": {
|
||||
"type": "completion",
|
||||
"params": {
|
||||
"template": {
|
||||
"prompt": "{{prompt}}",
|
||||
"max_tokens": 200
|
||||
}
|
||||
},
|
||||
"dataset": {
|
||||
"files_url": "hf://datasets/default/sample-basic-test/testing/testing.jsonl"
|
||||
},
|
||||
"metrics": {
|
||||
"bleu": {
|
||||
"type": "bleu",
|
||||
"params": {
|
||||
"references": [
|
||||
"{{ideal_response}}"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Example for triggering a benchmark/custom evaluation
|
||||
|
||||
```
|
||||
POST /eval/benchmarks/{benchmark_id}/jobs
|
||||
```
|
||||
```json
|
||||
{
|
||||
"benchmark_id": "my-custom-benchmark",
|
||||
"benchmark_config": {
|
||||
"eval_candidate": {
|
||||
"type": "model",
|
||||
"model": "meta-llama/Llama3.1-8B-Instruct",
|
||||
"sampling_params": {
|
||||
"max_tokens": 100,
|
||||
"temperature": 0.7
|
||||
}
|
||||
},
|
||||
"scoring_params": {}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Response example:
|
||||
```json
|
||||
{
|
||||
"job_id": "eval-1234",
|
||||
"status": "in_progress"
|
||||
}
|
||||
```
|
||||
|
||||
### Example for getting the status of a job
|
||||
```
|
||||
GET /eval/benchmarks/{benchmark_id}/jobs/{job_id}
|
||||
```
|
||||
|
||||
Response example:
|
||||
```json
|
||||
{
|
||||
"job_id": "eval-1234",
|
||||
"status": "in_progress"
|
||||
}
|
||||
```
|
||||
|
||||
### Example for cancelling a job
|
||||
```
|
||||
POST /eval/benchmarks/{benchmark_id}/jobs/{job_id}/cancel
|
||||
```
|
||||
|
||||
### Example for getting the results
|
||||
```
|
||||
GET /eval/benchmarks/{benchmark_id}/results
|
||||
```
|
||||
```json
|
||||
{
|
||||
"generations": [],
|
||||
"scores": {
|
||||
"{benchmark_id}": {
|
||||
"score_rows": [],
|
||||
"aggregated_results": {
|
||||
"tasks": {},
|
||||
"groups": {}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
31
llama_stack/providers/remote/eval/nvidia/__init__.py
Normal file
31
llama_stack/providers/remote/eval/nvidia/__init__.py
Normal file
|
|
@ -0,0 +1,31 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict
|
||||
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
|
||||
from .config import NVIDIAEvalConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(
|
||||
config: NVIDIAEvalConfig,
|
||||
deps: Dict[Api, Any],
|
||||
):
|
||||
from .eval import NVIDIAEvalImpl
|
||||
|
||||
impl = NVIDIAEvalImpl(
|
||||
config,
|
||||
deps[Api.datasetio],
|
||||
deps[Api.datasets],
|
||||
deps[Api.scoring],
|
||||
deps[Api.inference],
|
||||
deps[Api.agents],
|
||||
)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
||||
|
||||
__all__ = ["get_adapter_impl", "NVIDIAEvalImpl"]
|
||||
29
llama_stack/providers/remote/eval/nvidia/config.py
Normal file
29
llama_stack/providers/remote/eval/nvidia/config.py
Normal file
|
|
@ -0,0 +1,29 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import os
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class NVIDIAEvalConfig(BaseModel):
|
||||
"""
|
||||
Configuration for the NVIDIA NeMo Evaluator microservice endpoint.
|
||||
|
||||
Attributes:
|
||||
evaluator_url (str): A base url for accessing the NVIDIA evaluation endpoint, e.g. http://localhost:8000.
|
||||
"""
|
||||
|
||||
evaluator_url: str = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_EVALUATOR_URL", "http://0.0.0.0:7331"),
|
||||
description="The url for accessing the evaluator service",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
return {
|
||||
"evaluator_url": "${env.NVIDIA_EVALUATOR_URL:http://localhost:7331}",
|
||||
}
|
||||
154
llama_stack/providers/remote/eval/nvidia/eval.py
Normal file
154
llama_stack/providers/remote/eval/nvidia/eval.py
Normal file
|
|
@ -0,0 +1,154 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import requests
|
||||
|
||||
from llama_stack.apis.agents import Agents
|
||||
from llama_stack.apis.benchmarks import Benchmark
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.apis.scoring import Scoring, ScoringResult
|
||||
from llama_stack.providers.datatypes import BenchmarksProtocolPrivate
|
||||
from llama_stack.providers.remote.inference.nvidia.models import MODEL_ENTRIES
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
|
||||
from .....apis.common.job_types import Job, JobStatus
|
||||
from .....apis.eval.eval import BenchmarkConfig, Eval, EvaluateResponse
|
||||
from .config import NVIDIAEvalConfig
|
||||
|
||||
DEFAULT_NAMESPACE = "nvidia"
|
||||
|
||||
|
||||
class NVIDIAEvalImpl(
|
||||
Eval,
|
||||
BenchmarksProtocolPrivate,
|
||||
ModelRegistryHelper,
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
config: NVIDIAEvalConfig,
|
||||
datasetio_api: DatasetIO,
|
||||
datasets_api: Datasets,
|
||||
scoring_api: Scoring,
|
||||
inference_api: Inference,
|
||||
agents_api: Agents,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.datasetio_api = datasetio_api
|
||||
self.datasets_api = datasets_api
|
||||
self.scoring_api = scoring_api
|
||||
self.inference_api = inference_api
|
||||
self.agents_api = agents_api
|
||||
|
||||
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
|
||||
|
||||
async def initialize(self) -> None: ...
|
||||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
async def _evaluator_get(self, path):
|
||||
"""Helper for making GET requests to the evaluator service."""
|
||||
response = requests.get(url=f"{self.config.evaluator_url}{path}")
|
||||
response.raise_for_status()
|
||||
return response.json()
|
||||
|
||||
async def _evaluator_post(self, path, data):
|
||||
"""Helper for making POST requests to the evaluator service."""
|
||||
response = requests.post(url=f"{self.config.evaluator_url}{path}", json=data)
|
||||
response.raise_for_status()
|
||||
return response.json()
|
||||
|
||||
async def register_benchmark(self, task_def: Benchmark) -> None:
|
||||
"""Register a benchmark as an evaluation configuration."""
|
||||
await self._evaluator_post(
|
||||
"/v1/evaluation/configs",
|
||||
{
|
||||
"namespace": DEFAULT_NAMESPACE,
|
||||
"name": task_def.benchmark_id,
|
||||
# metadata is copied to request body as-is
|
||||
**task_def.metadata,
|
||||
},
|
||||
)
|
||||
|
||||
async def run_eval(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
benchmark_config: BenchmarkConfig,
|
||||
) -> Job:
|
||||
"""Run an evaluation job for a benchmark."""
|
||||
model = (
|
||||
benchmark_config.eval_candidate.model
|
||||
if benchmark_config.eval_candidate.type == "model"
|
||||
else benchmark_config.eval_candidate.config.model
|
||||
)
|
||||
nvidia_model = self.get_provider_model_id(model) or model
|
||||
|
||||
result = await self._evaluator_post(
|
||||
"/v1/evaluation/jobs",
|
||||
{
|
||||
"config": f"{DEFAULT_NAMESPACE}/{benchmark_id}",
|
||||
"target": {"type": "model", "model": nvidia_model},
|
||||
},
|
||||
)
|
||||
|
||||
return Job(job_id=result["id"], status=JobStatus.in_progress)
|
||||
|
||||
async def evaluate_rows(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
input_rows: List[Dict[str, Any]],
|
||||
scoring_functions: List[str],
|
||||
benchmark_config: BenchmarkConfig,
|
||||
) -> EvaluateResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def job_status(self, benchmark_id: str, job_id: str) -> Job:
|
||||
"""Get the status of an evaluation job.
|
||||
|
||||
EvaluatorStatus: "created", "pending", "running", "cancelled", "cancelling", "failed", "completed".
|
||||
JobStatus: "scheduled", "in_progress", "completed", "cancelled", "failed"
|
||||
"""
|
||||
result = await self._evaluator_get(f"/v1/evaluation/jobs/{job_id}")
|
||||
result_status = result["status"]
|
||||
|
||||
job_status = JobStatus.failed
|
||||
if result_status in ["created", "pending"]:
|
||||
job_status = JobStatus.scheduled
|
||||
elif result_status in ["running"]:
|
||||
job_status = JobStatus.in_progress
|
||||
elif result_status in ["completed"]:
|
||||
job_status = JobStatus.completed
|
||||
elif result_status in ["cancelled"]:
|
||||
job_status = JobStatus.cancelled
|
||||
|
||||
return Job(job_id=job_id, status=job_status)
|
||||
|
||||
async def job_cancel(self, benchmark_id: str, job_id: str) -> None:
|
||||
"""Cancel the evaluation job."""
|
||||
await self._evaluator_post(f"/v1/evaluation/jobs/{job_id}/cancel", {})
|
||||
|
||||
async def job_result(self, benchmark_id: str, job_id: str) -> EvaluateResponse:
|
||||
"""Returns the results of the evaluation job."""
|
||||
|
||||
job = await self.job_status(benchmark_id, job_id)
|
||||
status = job.status
|
||||
if not status or status != JobStatus.completed:
|
||||
raise ValueError(f"Job {job_id} not completed. Status: {status.value}")
|
||||
|
||||
result = await self._evaluator_get(f"/v1/evaluation/jobs/{job_id}/results")
|
||||
|
||||
return EvaluateResponse(
|
||||
# TODO: these are stored in detailed results on NeMo Evaluator side; can be added
|
||||
generations=[],
|
||||
scores={
|
||||
benchmark_id: ScoringResult(
|
||||
score_rows=[],
|
||||
aggregated_results=result,
|
||||
)
|
||||
},
|
||||
)
|
||||
|
|
@ -47,10 +47,15 @@ class NVIDIAConfig(BaseModel):
|
|||
default=60,
|
||||
description="Timeout for the HTTP requests",
|
||||
)
|
||||
append_api_version: bool = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_APPEND_API_VERSION", "True").lower() != "false",
|
||||
description="When set to false, the API version will not be appended to the base_url. By default, it is true.",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
return {
|
||||
"url": "${env.NVIDIA_BASE_URL:https://integrate.api.nvidia.com}",
|
||||
"api_key": "${env.NVIDIA_API_KEY:}",
|
||||
"append_api_version": "${env.NVIDIA_APPEND_API_VERSION:True}",
|
||||
}
|
||||
|
|
|
|||
|
|
@ -33,7 +33,6 @@ from llama_stack.apis.inference import (
|
|||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import (
|
||||
OpenAIChatCompletion,
|
||||
|
|
@ -42,7 +41,11 @@ from llama_stack.apis.inference.inference import (
|
|||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
)
|
||||
from llama_stack.models.llama.datatypes import ToolPromptFormat
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolPromptFormat
|
||||
from llama_stack.providers.utils.inference import (
|
||||
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
|
|
@ -120,10 +123,10 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
"meta/llama-3.2-90b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-90b-vision-instruct",
|
||||
}
|
||||
|
||||
base_url = f"{self._config.url}/v1"
|
||||
base_url = f"{self._config.url}/v1" if self._config.append_api_version else self._config.url
|
||||
|
||||
if _is_nvidia_hosted(self._config) and provider_model_id in special_model_urls:
|
||||
base_url = special_model_urls[provider_model_id]
|
||||
|
||||
return _get_client_for_base_url(base_url)
|
||||
|
||||
async def _get_provider_model_id(self, model_id: str) -> str:
|
||||
|
|
@ -387,3 +390,44 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
return await self._get_client(provider_model_id).chat.completions.create(**params)
|
||||
except APIConnectionError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
"""
|
||||
Allow non-llama model registration.
|
||||
|
||||
Non-llama model registration: API Catalogue models, post-training models, etc.
|
||||
client = LlamaStackAsLibraryClient("nvidia")
|
||||
client.models.register(
|
||||
model_id="mistralai/mixtral-8x7b-instruct-v0.1",
|
||||
model_type=ModelType.llm,
|
||||
provider_id="nvidia",
|
||||
provider_model_id="mistralai/mixtral-8x7b-instruct-v0.1"
|
||||
)
|
||||
|
||||
NOTE: Only supports models endpoints compatible with AsyncOpenAI base_url format.
|
||||
"""
|
||||
if model.model_type == ModelType.embedding:
|
||||
# embedding models are always registered by their provider model id and does not need to be mapped to a llama model
|
||||
provider_resource_id = model.provider_resource_id
|
||||
else:
|
||||
provider_resource_id = self.get_provider_model_id(model.provider_resource_id)
|
||||
|
||||
if provider_resource_id:
|
||||
model.provider_resource_id = provider_resource_id
|
||||
else:
|
||||
llama_model = model.metadata.get("llama_model")
|
||||
existing_llama_model = self.get_llama_model(model.provider_resource_id)
|
||||
if existing_llama_model:
|
||||
if existing_llama_model != llama_model:
|
||||
raise ValueError(
|
||||
f"Provider model id '{model.provider_resource_id}' is already registered to a different llama model: '{existing_llama_model}'"
|
||||
)
|
||||
else:
|
||||
# not llama model
|
||||
if llama_model in ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR:
|
||||
self.provider_id_to_llama_model_map[model.provider_resource_id] = (
|
||||
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR[llama_model]
|
||||
)
|
||||
else:
|
||||
self.alias_to_provider_id_map[model.provider_model_id] = model.provider_model_id
|
||||
return model
|
||||
|
|
|
|||
22
llama_stack/providers/remote/inference/watsonx/__init__.py
Normal file
22
llama_stack/providers/remote/inference/watsonx/__init__.py
Normal file
|
|
@ -0,0 +1,22 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.inference import Inference
|
||||
|
||||
from .config import WatsonXConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: WatsonXConfig, _deps) -> Inference:
|
||||
# import dynamically so `llama stack build` does not fail due to missing dependencies
|
||||
from .watsonx import WatsonXInferenceAdapter
|
||||
|
||||
if not isinstance(config, WatsonXConfig):
|
||||
raise RuntimeError(f"Unexpected config type: {type(config)}")
|
||||
adapter = WatsonXInferenceAdapter(config)
|
||||
return adapter
|
||||
|
||||
|
||||
__all__ = ["get_adapter_impl", "WatsonXConfig"]
|
||||
46
llama_stack/providers/remote/inference/watsonx/config.py
Normal file
46
llama_stack/providers/remote/inference/watsonx/config.py
Normal file
|
|
@ -0,0 +1,46 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class WatsonXProviderDataValidator(BaseModel):
|
||||
url: str
|
||||
api_key: str
|
||||
project_id: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class WatsonXConfig(BaseModel):
|
||||
url: str = Field(
|
||||
default_factory=lambda: os.getenv("WATSONX_BASE_URL", "https://us-south.ml.cloud.ibm.com"),
|
||||
description="A base url for accessing the watsonx.ai",
|
||||
)
|
||||
api_key: Optional[SecretStr] = Field(
|
||||
default_factory=lambda: os.getenv("WATSONX_API_KEY"),
|
||||
description="The watsonx API key, only needed of using the hosted service",
|
||||
)
|
||||
project_id: Optional[str] = Field(
|
||||
default_factory=lambda: os.getenv("WATSONX_PROJECT_ID"),
|
||||
description="The Project ID key, only needed of using the hosted service",
|
||||
)
|
||||
timeout: int = Field(
|
||||
default=60,
|
||||
description="Timeout for the HTTP requests",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
return {
|
||||
"url": "${env.WATSONX_BASE_URL:https://us-south.ml.cloud.ibm.com}",
|
||||
"api_key": "${env.WATSONX_API_KEY:}",
|
||||
"project_id": "${env.WATSONX_PROJECT_ID:}",
|
||||
}
|
||||
47
llama_stack/providers/remote/inference/watsonx/models.py
Normal file
47
llama_stack/providers/remote/inference/watsonx/models.py
Normal file
|
|
@ -0,0 +1,47 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.models.llama.sku_types import CoreModelId
|
||||
from llama_stack.providers.utils.inference.model_registry import build_hf_repo_model_entry
|
||||
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-3-70b-instruct",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-2-13b-chat",
|
||||
CoreModelId.llama2_13b.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-1-70b-instruct",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-1-8b-instruct",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-2-11b-vision-instruct",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-2-1b-instruct",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-2-3b-instruct",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-2-90b-vision-instruct",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-guard-3-11b-vision",
|
||||
CoreModelId.llama_guard_3_11b_vision.value,
|
||||
),
|
||||
]
|
||||
260
llama_stack/providers/remote/inference/watsonx/watsonx.py
Normal file
260
llama_stack/providers/remote/inference/watsonx/watsonx.py
Normal file
|
|
@ -0,0 +1,260 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import AsyncGenerator, List, Optional, Union
|
||||
|
||||
from ibm_watson_machine_learning.foundation_models import Model
|
||||
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent, InterleavedContentItem
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
CompletionRequest,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAICompatCompletionChoice,
|
||||
OpenAICompatCompletionResponse,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
from . import WatsonXConfig
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
|
||||
class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
|
||||
def __init__(self, config: WatsonXConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
|
||||
|
||||
print(f"Initializing watsonx InferenceAdapter({config.url})...")
|
||||
|
||||
self._config = config
|
||||
|
||||
self._project_id = self._config.project_id
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = CompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_completion(request)
|
||||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
def _get_client(self, model_id) -> Model:
|
||||
config_api_key = self._config.api_key.get_secret_value() if self._config.api_key else None
|
||||
config_url = self._config.url
|
||||
project_id = self._config.project_id
|
||||
credentials = {"url": config_url, "apikey": config_api_key}
|
||||
|
||||
return Model(model_id=model_id, credentials=credentials, project_id=project_id)
|
||||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = self._get_client(request.model).generate(**params)
|
||||
choices = []
|
||||
if "results" in r:
|
||||
for result in r["results"]:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=result["stop_reason"] if result["stop_reason"] else None,
|
||||
text=result["generated_text"],
|
||||
)
|
||||
choices.append(choice)
|
||||
response = OpenAICompatCompletionResponse(
|
||||
choices=choices,
|
||||
)
|
||||
return process_completion_response(response)
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
s = self._get_client(request.model).generate_text_stream(**params)
|
||||
for chunk in s:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=None,
|
||||
text=chunk,
|
||||
)
|
||||
yield OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
||||
stream = _generate_and_convert_to_openai_compat()
|
||||
async for chunk in process_completion_stream_response(stream):
|
||||
yield chunk
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
tool_config=tool_config,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = self._get_client(request.model).generate(**params)
|
||||
choices = []
|
||||
if "results" in r:
|
||||
for result in r["results"]:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=result["stop_reason"] if result["stop_reason"] else None,
|
||||
text=result["generated_text"],
|
||||
)
|
||||
choices.append(choice)
|
||||
response = OpenAICompatCompletionResponse(
|
||||
choices=choices,
|
||||
)
|
||||
return process_chat_completion_response(response, request)
|
||||
|
||||
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
model_id = request.model
|
||||
|
||||
# if we shift to TogetherAsyncClient, we won't need this wrapper
|
||||
async def _to_async_generator():
|
||||
s = self._get_client(model_id).generate_text_stream(**params)
|
||||
for chunk in s:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=None,
|
||||
text=chunk,
|
||||
)
|
||||
yield OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict:
|
||||
input_dict = {"params": {}}
|
||||
media_present = request_has_media(request)
|
||||
llama_model = self.get_llama_model(request.model)
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
|
||||
else:
|
||||
assert not media_present, "Together does not support media for Completion requests"
|
||||
input_dict["prompt"] = await completion_request_to_prompt(request)
|
||||
if request.sampling_params:
|
||||
if request.sampling_params.strategy:
|
||||
input_dict["params"][GenParams.DECODING_METHOD] = request.sampling_params.strategy.type
|
||||
if request.sampling_params.max_tokens:
|
||||
input_dict["params"][GenParams.MAX_NEW_TOKENS] = request.sampling_params.max_tokens
|
||||
if request.sampling_params.repetition_penalty:
|
||||
input_dict["params"][GenParams.REPETITION_PENALTY] = request.sampling_params.repetition_penalty
|
||||
if request.sampling_params.additional_params.get("top_p"):
|
||||
input_dict["params"][GenParams.TOP_P] = request.sampling_params.additional_params["top_p"]
|
||||
if request.sampling_params.additional_params.get("top_k"):
|
||||
input_dict["params"][GenParams.TOP_K] = request.sampling_params.additional_params["top_k"]
|
||||
if request.sampling_params.additional_params.get("temperature"):
|
||||
input_dict["params"][GenParams.TEMPERATURE] = request.sampling_params.additional_params["temperature"]
|
||||
if request.sampling_params.additional_params.get("length_penalty"):
|
||||
input_dict["params"][GenParams.LENGTH_PENALTY] = request.sampling_params.additional_params[
|
||||
"length_penalty"
|
||||
]
|
||||
if request.sampling_params.additional_params.get("random_seed"):
|
||||
input_dict["params"][GenParams.RANDOM_SEED] = request.sampling_params.additional_params["random_seed"]
|
||||
if request.sampling_params.additional_params.get("min_new_tokens"):
|
||||
input_dict["params"][GenParams.MIN_NEW_TOKENS] = request.sampling_params.additional_params[
|
||||
"min_new_tokens"
|
||||
]
|
||||
if request.sampling_params.additional_params.get("stop_sequences"):
|
||||
input_dict["params"][GenParams.STOP_SEQUENCES] = request.sampling_params.additional_params[
|
||||
"stop_sequences"
|
||||
]
|
||||
if request.sampling_params.additional_params.get("time_limit"):
|
||||
input_dict["params"][GenParams.TIME_LIMIT] = request.sampling_params.additional_params["time_limit"]
|
||||
if request.sampling_params.additional_params.get("truncate_input_tokens"):
|
||||
input_dict["params"][GenParams.TRUNCATE_INPUT_TOKENS] = request.sampling_params.additional_params[
|
||||
"truncate_input_tokens"
|
||||
]
|
||||
if request.sampling_params.additional_params.get("return_options"):
|
||||
input_dict["params"][GenParams.RETURN_OPTIONS] = request.sampling_params.additional_params[
|
||||
"return_options"
|
||||
]
|
||||
|
||||
params = {
|
||||
**input_dict,
|
||||
}
|
||||
return params
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[str] | List[InterleavedContentItem],
|
||||
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
||||
output_dimension: Optional[int] = None,
|
||||
task_type: Optional[EmbeddingTaskType] = None,
|
||||
) -> EmbeddingsResponse:
|
||||
pass
|
||||
|
|
@ -36,7 +36,6 @@ import os
|
|||
|
||||
os.environ["NVIDIA_API_KEY"] = "your-api-key"
|
||||
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test"
|
||||
os.environ["NVIDIA_USER_ID"] = "llama-stack-user"
|
||||
os.environ["NVIDIA_DATASET_NAMESPACE"] = "default"
|
||||
os.environ["NVIDIA_PROJECT_ID"] = "test-project"
|
||||
os.environ["NVIDIA_OUTPUT_MODEL_DIR"] = "test-example-model@v1"
|
||||
|
|
@ -125,6 +124,21 @@ client.post_training.job.cancel(job_uuid="your-job-id")
|
|||
|
||||
### Inference with the fine-tuned model
|
||||
|
||||
#### 1. Register the model
|
||||
|
||||
```python
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
|
||||
client.models.register(
|
||||
model_id="test-example-model@v1",
|
||||
provider_id="nvidia",
|
||||
provider_model_id="test-example-model@v1",
|
||||
model_type=ModelType.llm,
|
||||
)
|
||||
```
|
||||
|
||||
#### 2. Inference with the fine-tuned model
|
||||
|
||||
```python
|
||||
response = client.inference.completion(
|
||||
content="Complete the sentence using one word: Roses are red, violets are ",
|
||||
|
|
|
|||
|
|
@ -524,11 +524,26 @@ async def convert_message_to_openai_dict(message: Message, download: bool = Fals
|
|||
else:
|
||||
content = [await _convert_content(message.content)]
|
||||
|
||||
return {
|
||||
result = {
|
||||
"role": message.role,
|
||||
"content": content,
|
||||
}
|
||||
|
||||
if hasattr(message, "tool_calls") and message.tool_calls:
|
||||
result["tool_calls"] = []
|
||||
for tc in message.tool_calls:
|
||||
result["tool_calls"].append(
|
||||
{
|
||||
"id": tc.call_id,
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tc.tool_name,
|
||||
"arguments": tc.arguments_json if hasattr(tc, "arguments_json") else json.dumps(tc.arguments),
|
||||
},
|
||||
}
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
class UnparseableToolCall(BaseModel):
|
||||
"""
|
||||
|
|
|
|||
|
|
@ -52,6 +52,9 @@ from llama_stack.models.llama.llama3.prompt_templates import (
|
|||
SystemDefaultGenerator,
|
||||
)
|
||||
from llama_stack.models.llama.llama3.tokenizer import Tokenizer
|
||||
from llama_stack.models.llama.llama4.prompt_templates.system_prompts import (
|
||||
PythonListCustomToolGenerator as PythonListCustomToolGeneratorLlama4,
|
||||
)
|
||||
from llama_stack.models.llama.sku_list import resolve_model
|
||||
from llama_stack.models.llama.sku_types import ModelFamily, is_multimodal
|
||||
from llama_stack.providers.utils.inference import supported_inference_models
|
||||
|
|
@ -306,10 +309,11 @@ def chat_completion_request_to_messages(
|
|||
elif model.model_family in (
|
||||
ModelFamily.llama3_2,
|
||||
ModelFamily.llama3_3,
|
||||
ModelFamily.llama4,
|
||||
):
|
||||
# llama3.2, llama3.3 and llama4 models follow the same tool prompt format
|
||||
messages = augment_messages_for_tools_llama_3_2(request)
|
||||
# llama3.2, llama3.3 follow the same tool prompt format
|
||||
messages = augment_messages_for_tools_llama(request, PythonListCustomToolGenerator)
|
||||
elif model.model_family == ModelFamily.llama4:
|
||||
messages = augment_messages_for_tools_llama(request, PythonListCustomToolGeneratorLlama4)
|
||||
else:
|
||||
messages = request.messages
|
||||
|
||||
|
|
@ -399,8 +403,9 @@ def augment_messages_for_tools_llama_3_1(
|
|||
return messages
|
||||
|
||||
|
||||
def augment_messages_for_tools_llama_3_2(
|
||||
def augment_messages_for_tools_llama(
|
||||
request: ChatCompletionRequest,
|
||||
custom_tool_prompt_generator,
|
||||
) -> List[Message]:
|
||||
existing_messages = request.messages
|
||||
existing_system_message = None
|
||||
|
|
@ -434,7 +439,7 @@ def augment_messages_for_tools_llama_3_2(
|
|||
if existing_system_message and request.tool_config.system_message_behavior == SystemMessageBehavior.replace:
|
||||
system_prompt = existing_system_message.content
|
||||
|
||||
tool_template = PythonListCustomToolGenerator().gen(custom_tools, system_prompt)
|
||||
tool_template = custom_tool_prompt_generator().gen(custom_tools, system_prompt)
|
||||
|
||||
sys_content += tool_template.render()
|
||||
sys_content += "\n"
|
||||
|
|
|
|||
|
|
@ -394,12 +394,10 @@
|
|||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
|
|
@ -411,7 +409,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
|
@ -419,7 +416,6 @@
|
|||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
],
|
||||
"ollama": [
|
||||
|
|
@ -759,5 +755,41 @@
|
|||
"vllm",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"watsonx": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"ibm_watson_machine_learning",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
]
|
||||
}
|
||||
|
|
|
|||
|
|
@ -69,6 +69,7 @@ LLAMA_STACK_PORT=8321
|
|||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
--gpu all \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
llamastack/distribution-{{ name }} \
|
||||
|
|
@ -82,6 +83,7 @@ If you are using Llama Stack Safety / Shield APIs, use:
|
|||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
--gpu all \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
llamastack/distribution-{{ name }} \
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
version: '2'
|
||||
distribution_spec:
|
||||
description: Use NVIDIA NIM for running LLM inference and safety
|
||||
description: Use NVIDIA NIM for running LLM inference, evaluation and safety
|
||||
providers:
|
||||
inference:
|
||||
- remote::nvidia
|
||||
|
|
@ -13,7 +13,7 @@ distribution_spec:
|
|||
telemetry:
|
||||
- inline::meta-reference
|
||||
eval:
|
||||
- inline::meta-reference
|
||||
- remote::nvidia
|
||||
post_training:
|
||||
- remote::nvidia
|
||||
datasetio:
|
||||
|
|
|
|||
|
|
@ -7,6 +7,7 @@
|
|||
from pathlib import Path
|
||||
|
||||
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput, ToolGroupInput
|
||||
from llama_stack.providers.remote.eval.nvidia import NVIDIAEvalConfig
|
||||
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
|
||||
from llama_stack.providers.remote.inference.nvidia.models import MODEL_ENTRIES
|
||||
from llama_stack.providers.remote.safety.nvidia import NVIDIASafetyConfig
|
||||
|
|
@ -20,7 +21,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"safety": ["remote::nvidia"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
"eval": ["inline::meta-reference"],
|
||||
"eval": ["remote::nvidia"],
|
||||
"post_training": ["remote::nvidia"],
|
||||
"datasetio": ["inline::localfs"],
|
||||
"scoring": ["inline::basic"],
|
||||
|
|
@ -37,6 +38,11 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
provider_type="remote::nvidia",
|
||||
config=NVIDIASafetyConfig.sample_run_config(),
|
||||
)
|
||||
eval_provider = Provider(
|
||||
provider_id="nvidia",
|
||||
provider_type="remote::nvidia",
|
||||
config=NVIDIAEvalConfig.sample_run_config(),
|
||||
)
|
||||
inference_model = ModelInput(
|
||||
model_id="${env.INFERENCE_MODEL}",
|
||||
provider_id="nvidia",
|
||||
|
|
@ -60,7 +66,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
return DistributionTemplate(
|
||||
name="nvidia",
|
||||
distro_type="self_hosted",
|
||||
description="Use NVIDIA NIM for running LLM inference and safety",
|
||||
description="Use NVIDIA NIM for running LLM inference, evaluation and safety",
|
||||
container_image=None,
|
||||
template_path=Path(__file__).parent / "doc_template.md",
|
||||
providers=providers,
|
||||
|
|
@ -69,6 +75,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider],
|
||||
"eval": [eval_provider],
|
||||
},
|
||||
default_models=default_models,
|
||||
default_tool_groups=default_tool_groups,
|
||||
|
|
@ -78,7 +85,8 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"inference": [
|
||||
inference_provider,
|
||||
safety_provider,
|
||||
]
|
||||
],
|
||||
"eval": [eval_provider],
|
||||
},
|
||||
default_models=[inference_model, safety_model],
|
||||
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}", provider_id="nvidia")],
|
||||
|
|
@ -90,19 +98,15 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"",
|
||||
"NVIDIA API Key",
|
||||
),
|
||||
## Nemo Customizer related variables
|
||||
"NVIDIA_USER_ID": (
|
||||
"llama-stack-user",
|
||||
"NVIDIA User ID",
|
||||
"NVIDIA_APPEND_API_VERSION": (
|
||||
"True",
|
||||
"Whether to append the API version to the base_url",
|
||||
),
|
||||
## Nemo Customizer related variables
|
||||
"NVIDIA_DATASET_NAMESPACE": (
|
||||
"default",
|
||||
"NVIDIA Dataset Namespace",
|
||||
),
|
||||
"NVIDIA_ACCESS_POLICIES": (
|
||||
"{}",
|
||||
"NVIDIA Access Policies",
|
||||
),
|
||||
"NVIDIA_PROJECT_ID": (
|
||||
"test-project",
|
||||
"NVIDIA Project ID",
|
||||
|
|
@ -119,6 +123,10 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"http://0.0.0.0:7331",
|
||||
"URL for the NeMo Guardrails Service",
|
||||
),
|
||||
"NVIDIA_EVALUATOR_URL": (
|
||||
"http://0.0.0.0:7331",
|
||||
"URL for the NeMo Evaluator Service",
|
||||
),
|
||||
"INFERENCE_MODEL": (
|
||||
"Llama3.1-8B-Instruct",
|
||||
"Inference model",
|
||||
|
|
|
|||
|
|
@ -18,6 +18,7 @@ providers:
|
|||
config:
|
||||
url: ${env.NVIDIA_BASE_URL:https://integrate.api.nvidia.com}
|
||||
api_key: ${env.NVIDIA_API_KEY:}
|
||||
append_api_version: ${env.NVIDIA_APPEND_API_VERSION:True}
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
|
|
@ -53,13 +54,10 @@ providers:
|
|||
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/nvidia/trace_store.db}
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/nvidia}/meta_reference_eval.db
|
||||
evaluator_url: ${env.NVIDIA_EVALUATOR_URL:http://localhost:7331}
|
||||
post_training:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
|
|
|
|||
|
|
@ -18,6 +18,7 @@ providers:
|
|||
config:
|
||||
url: ${env.NVIDIA_BASE_URL:https://integrate.api.nvidia.com}
|
||||
api_key: ${env.NVIDIA_API_KEY:}
|
||||
append_api_version: ${env.NVIDIA_APPEND_API_VERSION:True}
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
|
|
@ -48,13 +49,10 @@ providers:
|
|||
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/nvidia/trace_store.db}
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/nvidia}/meta_reference_eval.db
|
||||
evaluator_url: ${env.NVIDIA_EVALUATOR_URL:http://localhost:7331}
|
||||
post_training:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
|
|
|
|||
7
llama_stack/templates/watsonx/__init__.py
Normal file
7
llama_stack/templates/watsonx/__init__.py
Normal file
|
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .watsonx import get_distribution_template # noqa: F401
|
||||
30
llama_stack/templates/watsonx/build.yaml
Normal file
30
llama_stack/templates/watsonx/build.yaml
Normal file
|
|
@ -0,0 +1,30 @@
|
|||
version: '2'
|
||||
distribution_spec:
|
||||
description: Use watsonx for running LLM inference
|
||||
providers:
|
||||
inference:
|
||||
- remote::watsonx
|
||||
vector_io:
|
||||
- inline::faiss
|
||||
safety:
|
||||
- inline::llama-guard
|
||||
agents:
|
||||
- inline::meta-reference
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
eval:
|
||||
- inline::meta-reference
|
||||
datasetio:
|
||||
- remote::huggingface
|
||||
- inline::localfs
|
||||
scoring:
|
||||
- inline::basic
|
||||
- inline::llm-as-judge
|
||||
- inline::braintrust
|
||||
tool_runtime:
|
||||
- remote::brave-search
|
||||
- remote::tavily-search
|
||||
- inline::code-interpreter
|
||||
- inline::rag-runtime
|
||||
- remote::model-context-protocol
|
||||
image_type: conda
|
||||
74
llama_stack/templates/watsonx/doc_template.md
Normal file
74
llama_stack/templates/watsonx/doc_template.md
Normal file
|
|
@ -0,0 +1,74 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# watsonx Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
|
||||
|
||||
{{ providers_table }}
|
||||
|
||||
{% if run_config_env_vars %}
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
{% for var, (default_value, description) in run_config_env_vars.items() %}
|
||||
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
{% if default_models %}
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
{% for model in default_models %}
|
||||
- `{{ model.model_id }} {{ model.doc_string }}`
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
||||
Make sure you have access to a watsonx API Key. You can get one by referring [watsonx.ai](https://www.ibm.com/docs/en/masv-and-l/maximo-manage/continuous-delivery?topic=setup-create-watsonx-api-key).
|
||||
|
||||
|
||||
## Running Llama Stack with watsonx
|
||||
|
||||
You can do this via Conda (build code), venv or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env WATSONX_API_KEY=$WATSONX_API_KEY \
|
||||
--env WATSONX_PROJECT_ID=$WATSONX_PROJECT_ID \
|
||||
--env WATSONX_BASE_URL=$WATSONX_BASE_URL
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
```bash
|
||||
llama stack build --template watsonx --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env WATSONX_API_KEY=$WATSONX_API_KEY \
|
||||
--env WATSONX_PROJECT_ID=$WATSONX_PROJECT_ID
|
||||
```
|
||||
210
llama_stack/templates/watsonx/run.yaml
Normal file
210
llama_stack/templates/watsonx/run.yaml
Normal file
|
|
@ -0,0 +1,210 @@
|
|||
version: '2'
|
||||
image_name: watsonx
|
||||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: watsonx
|
||||
provider_type: remote::watsonx
|
||||
config:
|
||||
url: ${env.WATSONX_BASE_URL:https://us-south.ml.cloud.ibm.com}
|
||||
api_key: ${env.WATSONX_API_KEY:}
|
||||
project_id: ${env.WATSONX_PROJECT_ID:}
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/watsonx}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
excluded_categories: []
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/watsonx}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/watsonx/trace_store.db}
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/watsonx}/meta_reference_eval.db
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/watsonx}/huggingface_datasetio.db
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/watsonx}/localfs_datasetio.db
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
config: {}
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
config: {}
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: code-interpreter
|
||||
provider_type: inline::code-interpreter
|
||||
config: {}
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
config: {}
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
config: {}
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/watsonx}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: meta-llama/llama-3-3-70b-instruct
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-3-3-70b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.3-70B-Instruct
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-3-3-70b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/llama-2-13b-chat
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-2-13b-chat
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-2-13b
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-2-13b-chat
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/llama-3-1-70b-instruct
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-3-1-70b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-70B-Instruct
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-3-1-70b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/llama-3-1-8b-instruct
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-3-1-8b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-8B-Instruct
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-3-1-8b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/llama-3-2-11b-vision-instruct
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-3-2-11b-vision-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-11B-Vision-Instruct
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-3-2-11b-vision-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/llama-3-2-1b-instruct
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-3-2-1b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-1B-Instruct
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-3-2-1b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/llama-3-2-3b-instruct
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-3-2-3b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-3B-Instruct
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-3-2-3b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/llama-3-2-90b-vision-instruct
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-3-2-90b-vision-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-90B-Vision-Instruct
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-3-2-90b-vision-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/llama-guard-3-11b-vision
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-guard-3-11b-vision
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-Guard-3-11B-Vision
|
||||
provider_id: watsonx
|
||||
provider_model_id: meta-llama/llama-guard-3-11b-vision
|
||||
model_type: llm
|
||||
shields: []
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
- toolgroup_id: builtin::code_interpreter
|
||||
provider_id: code-interpreter
|
||||
server:
|
||||
port: 8321
|
||||
90
llama_stack/templates/watsonx/watsonx.py
Normal file
90
llama_stack/templates/watsonx/watsonx.py
Normal file
|
|
@ -0,0 +1,90 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from llama_stack.distribution.datatypes import Provider, ToolGroupInput
|
||||
from llama_stack.providers.remote.inference.watsonx import WatsonXConfig
|
||||
from llama_stack.providers.remote.inference.watsonx.models import MODEL_ENTRIES
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
providers = {
|
||||
"inference": ["remote::watsonx"],
|
||||
"vector_io": ["inline::faiss"],
|
||||
"safety": ["inline::llama-guard"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
"eval": ["inline::meta-reference"],
|
||||
"datasetio": ["remote::huggingface", "inline::localfs"],
|
||||
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
||||
"tool_runtime": [
|
||||
"remote::brave-search",
|
||||
"remote::tavily-search",
|
||||
"inline::code-interpreter",
|
||||
"inline::rag-runtime",
|
||||
"remote::model-context-protocol",
|
||||
],
|
||||
}
|
||||
|
||||
inference_provider = Provider(
|
||||
provider_id="watsonx",
|
||||
provider_type="remote::watsonx",
|
||||
config=WatsonXConfig.sample_run_config(),
|
||||
)
|
||||
|
||||
available_models = {
|
||||
"watsonx": MODEL_ENTRIES,
|
||||
}
|
||||
default_tool_groups = [
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::websearch",
|
||||
provider_id="tavily-search",
|
||||
),
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::rag",
|
||||
provider_id="rag-runtime",
|
||||
),
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::code_interpreter",
|
||||
provider_id="code-interpreter",
|
||||
),
|
||||
]
|
||||
|
||||
default_models = get_model_registry(available_models)
|
||||
return DistributionTemplate(
|
||||
name="watsonx",
|
||||
distro_type="remote_hosted",
|
||||
description="Use watsonx for running LLM inference",
|
||||
container_image=None,
|
||||
template_path=Path(__file__).parent / "doc_template.md",
|
||||
providers=providers,
|
||||
available_models_by_provider=available_models,
|
||||
run_configs={
|
||||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider],
|
||||
},
|
||||
default_models=default_models,
|
||||
default_tool_groups=default_tool_groups,
|
||||
),
|
||||
},
|
||||
run_config_env_vars={
|
||||
"LLAMASTACK_PORT": (
|
||||
"5001",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"WATSONX_API_KEY": (
|
||||
"",
|
||||
"watsonx API Key",
|
||||
),
|
||||
"WATSONX_PROJECT_ID": (
|
||||
"",
|
||||
"watsonx Project ID",
|
||||
),
|
||||
},
|
||||
)
|
||||
Loading…
Add table
Add a link
Reference in a new issue