feat: RFC: tools API rework

# What does this PR do?
This PR proposes updates to the tools API in Inference and Agent.

Goals:
1. Agent's tool specification should be consistent with Inference's tool spec, but with add-ons.
2. Formal types should be defined for built in tools. Currently Agent tools args are untyped, e.g. how does one know that `builtin::rag_tool` takes a `vector_db_ids` param or even how to know 'builtin::rag_tool' is even available (in code, outside of docs)?

Inference:
1. BuiltinTool is to be removed and replaced by a formal `type` parameter.
2. 'brave_search' is replaced by 'web_search' to be more generic. It will still be translated back to brave_search when the prompt is constructed to be consistent with model training.
3. I'm not sure what `photogen` is. Maybe it can be removed?

Agent:
1. Uses the same format as in Inference for builtin tools.
2. New tools types are added, i.e. knowledge_sesarch (currently rag_tool), and MCP tool.
3. Toolgroup as a concept will be removed since it's really only used for MCP.
4. Instead MCPTool is its own type and available tools provided by the server will be expanded by default. Users can specify a subset of tool names if desired.

Example snippet:
```

agent = Agent(
    client,
    model=model_id,
    instructions="You are a helpful assistant. Use the tools you have access to for providing relevant answers.",
    tools=[
        KnowledgeSearchTool(vector_store_id="1234"),
        KnowledgeSearchTool(vector_store_id="5678", name="paper_search", description="Search research papers"),
        KnowledgeSearchTool(vector_store_id="1357", name="wiki_search", description="Search wiki pages"),
        # no need to register toolgroup, just pass in the server uri
        # all available tools will be used
        MCPTool(server_uri="http://localhost:8000/sse"),
        # can specify a subset of available tools
        MCPTool(server_uri="http://localhost:8000/sse", tool_names=["list_directory"]),
        MCPTool(server_uri="http://localhost:8000/sse", tool_names=["list_directory"]),
        # custom tool
        my_custom_tool,
    ]
)
```

## Test Plan
# What does this PR do?


## Test Plan
# What does this PR do?


## Test Plan
This commit is contained in:
Eric Huang 2025-03-26 11:14:40 -07:00
parent 39e094736f
commit 7027b537e0
22 changed files with 951 additions and 525 deletions

View file

@ -33,10 +33,10 @@ class Role(Enum):
tool = "tool"
class BuiltinTool(Enum):
brave_search = "brave_search"
class ToolType(Enum):
function = "function"
web_search = "web_search"
wolfram_alpha = "wolfram_alpha"
photogen = "photogen"
code_interpreter = "code_interpreter"
@ -45,8 +45,9 @@ RecursiveType = Union[Primitive, List[Primitive], Dict[str, Primitive]]
class ToolCall(BaseModel):
type: ToolType
call_id: str
tool_name: Union[BuiltinTool, str]
tool_name: str
# Plan is to deprecate the Dict in favor of a JSON string
# that is parsed on the client side instead of trying to manage
# the recursive type here.
@ -59,12 +60,18 @@ class ToolCall(BaseModel):
@field_validator("tool_name", mode="before")
@classmethod
def validate_field(cls, v):
# for backwards compatibility, we allow the tool name to be a string or a BuiltinTool
# TODO: remove ToolDefinitionDeprecated in v0.1.10
tool_name = v
if isinstance(v, str):
try:
return BuiltinTool(v)
tool_name = BuiltinTool(v)
except ValueError:
return v
return v
pass
if isinstance(tool_name, BuiltinTool):
return tool_name.to_tool().type
return tool_name
class ToolPromptFormat(Enum):
@ -151,8 +158,136 @@ class ToolParamDefinition(BaseModel):
default: Optional[Any] = None
class Tool(BaseModel):
type: ToolType
@classmethod
def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
required_properties = ["name", "description", "parameters"]
for prop in required_properties:
has_property = any(isinstance(v, property) for v in [cls.__dict__.get(prop)])
has_field = prop in cls.__annotations__ or prop in cls.__dict__
if not has_property and not has_field:
raise TypeError(f"Class {cls.__name__} must implement '{prop}' property or field")
@json_schema_type
class ToolDefinition(BaseModel):
class WebSearchTool(Tool):
type: Literal[ToolType.web_search.value] = ToolType.web_search.value
@property
def name(self) -> str:
return "web_search"
@property
def description(self) -> str:
return "Search the web for information"
@property
def parameters(self) -> Dict[str, ToolParamDefinition]:
return {
"query": ToolParamDefinition(
description="The query to search for",
param_type="string",
required=True,
),
}
@json_schema_type
class WolframAlphaTool(Tool):
type: Literal[ToolType.wolfram_alpha.value] = ToolType.wolfram_alpha.value
@property
def name(self) -> str:
return "wolfram_alpha"
@property
def description(self) -> str:
return "Query WolframAlpha for computational knowledge"
@property
def parameters(self) -> Dict[str, ToolParamDefinition]:
return {
"query": ToolParamDefinition(
description="The query to compute",
param_type="string",
required=True,
),
}
@json_schema_type
class CodeInterpreterTool(Tool):
type: Literal[ToolType.code_interpreter.value] = ToolType.code_interpreter.value
@property
def name(self) -> str:
return "code_interpreter"
@property
def description(self) -> str:
return "Execute code"
@property
def parameters(self) -> Dict[str, ToolParamDefinition]:
return {
"code": ToolParamDefinition(
description="The code to execute",
param_type="string",
required=True,
),
}
@json_schema_type
class FunctionTool(Tool):
type: Literal[ToolType.function.value] = ToolType.function.value
name: str
description: Optional[str] = None
parameters: Optional[Dict[str, ToolParamDefinition]] = None
@field_validator("name", mode="before")
@classmethod
def validate_name(cls, v):
if v in ToolType.__members__:
raise ValueError(f"Tool name '{v}' is a tool type and cannot be used as a name of a function tool")
return v
ToolDefinition = Annotated[
Union[WebSearchTool, WolframAlphaTool, CodeInterpreterTool, FunctionTool], Field(discriminator="type")
]
# TODO: remove ToolDefinitionDeprecated in v0.1.10
class BuiltinTool(Enum):
brave_search = "brave_search"
wolfram_alpha = "wolfram_alpha"
code_interpreter = "code_interpreter"
def to_tool_type(self) -> ToolType:
if self == BuiltinTool.brave_search:
return ToolType.web_search
elif self == BuiltinTool.wolfram_alpha:
return ToolType.wolfram_alpha
elif self == BuiltinTool.code_interpreter:
return ToolType.code_interpreter
def to_tool(self) -> WebSearchTool | WolframAlphaTool | CodeInterpreterTool:
if self == BuiltinTool.brave_search:
return WebSearchTool()
elif self == BuiltinTool.wolfram_alpha:
return WolframAlphaTool()
elif self == BuiltinTool.code_interpreter:
return CodeInterpreterTool()
# TODO: remove ToolDefinitionDeprecated in v0.1.10
@json_schema_type
class ToolDefinitionDeprecated(BaseModel):
tool_name: Union[BuiltinTool, str]
description: Optional[str] = None
parameters: Optional[Dict[str, ToolParamDefinition]] = None
@ -167,6 +302,21 @@ class ToolDefinition(BaseModel):
return v
return v
def to_tool_definition(self) -> ToolDefinition:
# convert to ToolDefinition
if self.tool_name == BuiltinTool.brave_search:
return WebSearchTool()
elif self.tool_name == BuiltinTool.code_interpreter:
return CodeInterpreterTool()
elif self.tool_name == BuiltinTool.wolfram_alpha:
return WolframAlphaTool()
else:
return FunctionTool(
name=self.tool_name,
description=self.description,
parameters=self.parameters,
)
@json_schema_type
class GreedySamplingStrategy(BaseModel):

View file

@ -20,7 +20,6 @@ from typing import Dict, List, Optional, Tuple
from PIL import Image as PIL_Image
from llama_stack.models.llama.datatypes import (
BuiltinTool,
RawContent,
RawMediaItem,
RawMessage,
@ -29,6 +28,7 @@ from llama_stack.models.llama.datatypes import (
StopReason,
ToolCall,
ToolPromptFormat,
ToolType,
)
from .tokenizer import Tokenizer
@ -127,7 +127,7 @@ class ChatFormat:
if (
message.role == "assistant"
and len(message.tool_calls) > 0
and message.tool_calls[0].tool_name == BuiltinTool.code_interpreter
and message.tool_calls[0].type == ToolType.code_interpreter
):
tokens.append(self.tokenizer.special_tokens["<|python_tag|>"])
@ -194,6 +194,7 @@ class ChatFormat:
stop_reason = StopReason.end_of_message
tool_name = None
tool_type = ToolType.function
tool_arguments = {}
custom_tool_info = ToolUtils.maybe_extract_custom_tool_call(content)
@ -202,8 +203,8 @@ class ChatFormat:
# Sometimes when agent has custom tools alongside builin tools
# Agent responds for builtin tool calls in the format of the custom tools
# This code tries to handle that case
if tool_name in BuiltinTool.__members__:
tool_name = BuiltinTool[tool_name]
if tool_name in ToolType.__members__:
tool_type = ToolType[tool_name]
if isinstance(tool_arguments, dict):
tool_arguments = {
"query": list(tool_arguments.values())[0],
@ -215,10 +216,11 @@ class ChatFormat:
tool_arguments = {
"query": query,
}
if tool_name in BuiltinTool.__members__:
tool_name = BuiltinTool[tool_name]
if tool_name in ToolType.__members__:
tool_type = ToolType[tool_name]
elif ipython:
tool_name = BuiltinTool.code_interpreter
tool_name = ToolType.code_interpreter.value
tool_type = ToolType.code_interpreter
tool_arguments = {
"code": content,
}
@ -228,6 +230,7 @@ class ChatFormat:
call_id = str(uuid.uuid4())
tool_calls.append(
ToolCall(
type=tool_type,
call_id=call_id,
tool_name=tool_name,
arguments=tool_arguments,

View file

@ -17,7 +17,7 @@ from typing import List, Optional
from termcolor import colored
from llama_stack.models.llama.datatypes import (
BuiltinTool,
FunctionTool,
RawMessage,
StopReason,
ToolCall,
@ -25,7 +25,6 @@ from llama_stack.models.llama.datatypes import (
ToolPromptFormat,
)
from . import template_data
from .chat_format import ChatFormat
from .prompt_templates import (
BuiltinToolGenerator,
@ -150,8 +149,8 @@ class LLama31Interface:
def system_messages(
self,
builtin_tools: List[BuiltinTool],
custom_tools: List[ToolDefinition],
builtin_tools: List[ToolDefinition],
custom_tools: List[FunctionTool],
instruction: Optional[str] = None,
) -> List[RawMessage]:
messages = []
@ -227,31 +226,3 @@ class LLama31Interface:
on_col = on_colors[i % len(on_colors)]
print(colored(self.tokenizer.decode([t]), "white", on_col), end="")
print("\n", end="")
def list_jinja_templates() -> List[Template]:
return TEMPLATES
def render_jinja_template(name: str, tool_prompt_format: ToolPromptFormat):
by_name = {t.template_name: t for t in TEMPLATES}
if name not in by_name:
raise ValueError(f"No template found for `{name}`")
template = by_name[name]
interface = LLama31Interface(tool_prompt_format)
data_func = getattr(template_data, template.data_provider)
if template.role == "system":
messages = interface.system_messages(**data_func())
elif template.role == "tool":
messages = interface.tool_response_messages(**data_func())
elif template.role == "assistant":
messages = interface.assistant_response_messages(**data_func())
elif template.role == "user":
messages = interface.user_message(**data_func())
tokens = interface.get_tokens(messages)
special_tokens = list(interface.tokenizer.special_tokens.values())
tokens = [(interface.tokenizer.decode([t]), t in special_tokens) for t in tokens]
return template, tokens

View file

@ -16,9 +16,13 @@ from datetime import datetime
from typing import Any, List, Optional
from llama_stack.models.llama.datatypes import (
BuiltinTool,
CodeInterpreterTool,
FunctionTool,
ToolDefinition,
ToolParamDefinition,
ToolType,
WebSearchTool,
WolframAlphaTool,
)
from .base import PromptTemplate, PromptTemplateGeneratorBase
@ -47,7 +51,7 @@ class BuiltinToolGenerator(PromptTemplateGeneratorBase):
def _tool_breakdown(self, tools: List[ToolDefinition]):
builtin_tools, custom_tools = [], []
for dfn in tools:
if isinstance(dfn.tool_name, BuiltinTool):
if dfn.type != ToolType.function.value:
builtin_tools.append(dfn)
else:
custom_tools.append(dfn)
@ -70,7 +74,11 @@ class BuiltinToolGenerator(PromptTemplateGeneratorBase):
return PromptTemplate(
template_str.lstrip("\n"),
{
"builtin_tools": [t.tool_name.value for t in builtin_tools],
"builtin_tools": [
# brave_search is used in training data for web_search
t.type if t.type != ToolType.web_search.value else "brave_search"
for t in builtin_tools
],
"custom_tools": custom_tools,
},
)
@ -79,19 +87,19 @@ class BuiltinToolGenerator(PromptTemplateGeneratorBase):
return [
# builtin tools
[
ToolDefinition(tool_name=BuiltinTool.code_interpreter),
ToolDefinition(tool_name=BuiltinTool.brave_search),
ToolDefinition(tool_name=BuiltinTool.wolfram_alpha),
CodeInterpreterTool(),
WebSearchTool(),
WolframAlphaTool(),
],
# only code interpretor
[
ToolDefinition(tool_name=BuiltinTool.code_interpreter),
CodeInterpreterTool(),
],
]
class JsonCustomToolGenerator(PromptTemplateGeneratorBase):
def gen(self, custom_tools: List[ToolDefinition]) -> PromptTemplate:
def gen(self, custom_tools: List[FunctionTool]) -> PromptTemplate:
template_str = textwrap.dedent(
"""
Answer the user's question by making use of the following functions if needed.
@ -99,7 +107,7 @@ class JsonCustomToolGenerator(PromptTemplateGeneratorBase):
Here is a list of functions in JSON format:
{% for t in custom_tools -%}
{# manually setting up JSON because jinja sorts keys in unexpected ways -#}
{%- set tname = t.tool_name -%}
{%- set tname = t.name -%}
{%- set tdesc = t.description -%}
{%- set tparams = t.parameters -%}
{%- set required_params = [] -%}
@ -140,8 +148,8 @@ class JsonCustomToolGenerator(PromptTemplateGeneratorBase):
def data_examples(self) -> List[List[ToolDefinition]]:
return [
[
ToolDefinition(
tool_name="trending_songs",
FunctionTool(
name="trending_songs",
description="Returns the trending songs on a Music site",
parameters={
"n": ToolParamDefinition(
@ -161,14 +169,14 @@ class JsonCustomToolGenerator(PromptTemplateGeneratorBase):
class FunctionTagCustomToolGenerator(PromptTemplateGeneratorBase):
def gen(self, custom_tools: List[ToolDefinition]) -> PromptTemplate:
def gen(self, custom_tools: List[FunctionTool]) -> PromptTemplate:
template_str = textwrap.dedent(
"""
You have access to the following functions:
{% for t in custom_tools %}
{#- manually setting up JSON because jinja sorts keys in unexpected ways -#}
{%- set tname = t.tool_name -%}
{%- set tname = t.name -%}
{%- set tdesc = t.description -%}
{%- set modified_params = t.parameters.copy() -%}
{%- for key, value in modified_params.items() -%}
@ -202,8 +210,8 @@ class FunctionTagCustomToolGenerator(PromptTemplateGeneratorBase):
def data_examples(self) -> List[List[ToolDefinition]]:
return [
[
ToolDefinition(
tool_name="trending_songs",
FunctionTool(
name="trending_songs",
description="Returns the trending songs on a Music site",
parameters={
"n": ToolParamDefinition(
@ -240,7 +248,7 @@ class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801
{"function_description": self._gen_function_description(custom_tools)},
)
def _gen_function_description(self, custom_tools: List[ToolDefinition]) -> PromptTemplate:
def _gen_function_description(self, custom_tools: List[FunctionTool]) -> PromptTemplate:
template_str = textwrap.dedent(
"""
If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)]
@ -252,7 +260,7 @@ class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801
[
{% for t in tools -%}
{# manually setting up JSON because jinja sorts keys in unexpected ways -#}
{%- set tname = t.tool_name -%}
{%- set tname = t.name -%}
{%- set tdesc = t.description -%}
{%- set tparams = t.parameters -%}
{%- set required_params = [] -%}
@ -289,8 +297,8 @@ class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801
def data_examples(self) -> List[List[ToolDefinition]]:
return [
[
ToolDefinition(
tool_name="get_weather",
FunctionTool(
name="get_weather",
description="Get weather info for places",
parameters={
"city": ToolParamDefinition(

View file

@ -16,7 +16,7 @@ import re
from typing import Optional, Tuple
from llama_stack.log import get_logger
from llama_stack.models.llama.datatypes import BuiltinTool, RecursiveType, ToolCall, ToolPromptFormat
from llama_stack.models.llama.datatypes import RecursiveType, ToolCall, ToolPromptFormat, ToolType
logger = get_logger(name=__name__, category="inference")
@ -24,6 +24,12 @@ BUILTIN_TOOL_PATTERN = r'\b(?P<tool_name>\w+)\.call\(query="(?P<query>[^"]*)"\)'
CUSTOM_TOOL_CALL_PATTERN = re.compile(r"<function=(?P<function_name>[^}]+)>(?P<args>{.*?})")
# The model is trained with brave_search for web_search, so we need to map it
TOOL_NAME_MAP = {
"brave_search": ToolType.web_search.value,
}
def is_json(s):
try:
parsed = json.loads(s)
@ -111,11 +117,6 @@ def parse_python_list_for_function_calls(input_string):
class ToolUtils:
@staticmethod
def is_builtin_tool_call(message_body: str) -> bool:
match = re.search(ToolUtils.BUILTIN_TOOL_PATTERN, message_body)
return match is not None
@staticmethod
def maybe_extract_builtin_tool_call(message_body: str) -> Optional[Tuple[str, str]]:
# Find the first match in the text
@ -125,7 +126,7 @@ class ToolUtils:
if match:
tool_name = match.group("tool_name")
query = match.group("query")
return tool_name, query
return TOOL_NAME_MAP.get(tool_name, tool_name), query
else:
return None
@ -143,7 +144,7 @@ class ToolUtils:
tool_name = match.group("function_name")
query = match.group("args")
try:
return tool_name, json.loads(query.replace("'", '"'))
return TOOL_NAME_MAP.get(tool_name, tool_name), json.loads(query.replace("'", '"'))
except Exception as e:
print("Exception while parsing json query for custom tool call", query, e)
return None
@ -152,30 +153,28 @@ class ToolUtils:
if ("type" in response and response["type"] == "function") or ("name" in response):
function_name = response["name"]
args = response["parameters"]
return function_name, args
return TOOL_NAME_MAP.get(function_name, function_name), args
else:
return None
elif is_valid_python_list(message_body):
res = parse_python_list_for_function_calls(message_body)
# FIXME: Enable multiple tool calls
return res[0]
function_name, args = res[0]
return TOOL_NAME_MAP.get(function_name, function_name), args
else:
return None
@staticmethod
def encode_tool_call(t: ToolCall, tool_prompt_format: ToolPromptFormat) -> str:
if t.tool_name == BuiltinTool.brave_search:
if t.type == ToolType.web_search:
q = t.arguments["query"]
return f'brave_search.call(query="{q}")'
elif t.tool_name == BuiltinTool.wolfram_alpha:
elif t.type == ToolType.wolfram_alpha:
q = t.arguments["query"]
return f'wolfram_alpha.call(query="{q}")'
elif t.tool_name == BuiltinTool.photogen:
q = t.arguments["query"]
return f'photogen.call(query="{q}")'
elif t.tool_name == BuiltinTool.code_interpreter:
elif t.type == ToolType.code_interpreter:
return t.arguments["code"]
else:
elif t.type == ToolType.function:
fname = t.tool_name
if tool_prompt_format == ToolPromptFormat.json:
@ -208,3 +207,5 @@ class ToolUtils:
return f"[{fname}({args_str})]"
else:
raise ValueError(f"Unsupported tool prompt format: {tool_prompt_format}")
else:
raise ValueError(f"Unsupported tool type: {t.type}")

View file

@ -15,11 +15,11 @@ import textwrap
from typing import List
from llama_stack.models.llama.datatypes import (
BuiltinTool,
RawMessage,
StopReason,
ToolCall,
ToolPromptFormat,
ToolType,
)
from ..prompt_format import (
@ -184,8 +184,9 @@ def usecases() -> List[UseCase | str]:
stop_reason=StopReason.end_of_message,
tool_calls=[
ToolCall(
type=ToolType.wolfram_alpha,
call_id="tool_call_id",
tool_name=BuiltinTool.wolfram_alpha,
tool_name=ToolType.wolfram_alpha.value,
arguments={"query": "100th decimal of pi"},
)
],

View file

@ -15,11 +15,11 @@ import textwrap
from typing import List
from llama_stack.models.llama.datatypes import (
BuiltinTool,
RawMessage,
StopReason,
ToolCall,
ToolPromptFormat,
ToolType,
)
from ..prompt_format import (
@ -183,8 +183,9 @@ def usecases() -> List[UseCase | str]:
stop_reason=StopReason.end_of_message,
tool_calls=[
ToolCall(
type=ToolType.wolfram_alpha,
call_id="tool_call_id",
tool_name=BuiltinTool.wolfram_alpha,
tool_name=ToolType.wolfram_alpha.value,
arguments={"query": "100th decimal of pi"},
)
],