portkey integration v2

This commit is contained in:
siddharthsambharia-portkey 2024-12-20 17:31:09 +05:30
parent 7ece0d4d8b
commit 71f27f6676
6 changed files with 266 additions and 0 deletions

View file

@ -22,6 +22,7 @@ from llama_stack.providers.remote.inference.fireworks import FireworksImplConfig
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
from llama_stack.providers.remote.inference.tgi import TGIImplConfig from llama_stack.providers.remote.inference.tgi import TGIImplConfig
from llama_stack.providers.remote.inference.portkey import PortkeyImplConfig
from llama_stack.providers.remote.inference.together import TogetherImplConfig from llama_stack.providers.remote.inference.together import TogetherImplConfig
from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig
from llama_stack.providers.tests.resolver import construct_stack_for_test from llama_stack.providers.tests.resolver import construct_stack_for_test
@ -82,6 +83,21 @@ def inference_cerebras() -> ProviderFixture:
], ],
) )
@pytest.fixture(scope="session")
def inference_cerebras() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="portkey",
provider_type="remote::portkey",
config=CerebrasImplConfig(
api_key=get_env_or_fail("PORTKEY_API_KEY"),
).model_dump(),
)
],
)
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def inference_ollama(inference_model) -> ProviderFixture: def inference_ollama(inference_model) -> ProviderFixture:

View file

@ -0,0 +1,7 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .cerebras import get_distribution_template # noqa: F401

View file

@ -0,0 +1,17 @@
version: '2'
name: cerebras
distribution_spec:
description: Use Cerebras for running LLM inference
docker_image: null
providers:
inference:
- remote::cerebras
safety:
- inline::llama-guard
memory:
- inline::meta-reference
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
image_type: conda

View file

@ -0,0 +1,60 @@
# Cerebras Distribution
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
{{ providers_table }}
{% if run_config_env_vars %}
### Environment Variables
The following environment variables can be configured:
{% for var, (default_value, description) in run_config_env_vars.items() %}
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
{% endfor %}
{% endif %}
{% if default_models %}
### Models
The following models are available by default:
{% for model in default_models %}
- `{{ model.model_id }} ({{ model.provider_model_id }})`
{% endfor %}
{% endif %}
### Prerequisite: API Keys
Make sure you have access to a Cerebras API Key. You can get one by visiting [cloud.cerebras.ai](https://cloud.cerebras.ai/).
## Running Llama Stack with Cerebras
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-{{ name }} \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env CEREBRAS_API_KEY=$CEREBRAS_API_KEY
```
### Via Conda
```bash
llama stack build --template cerebras --image-type conda
llama stack run ./run.yaml \
--port 5001 \
--env CEREBRAS_API_KEY=$CEREBRAS_API_KEY
```

View file

@ -0,0 +1,89 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from llama_models.sku_list import all_registered_models
from llama_stack.apis.models.models import ModelType
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.remote.inference.cerebras import CerebrasImplConfig
from llama_stack.providers.remote.inference.cerebras.cerebras import model_aliases
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::cerebras"],
"safety": ["inline::llama-guard"],
"memory": ["inline::meta-reference"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
}
inference_provider = Provider(
provider_id="cerebras",
provider_type="remote::cerebras",
config=CerebrasImplConfig.sample_run_config(),
)
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
core_model_to_hf_repo = {
m.descriptor(): m.huggingface_repo for m in all_registered_models()
}
default_models = [
ModelInput(
model_id=core_model_to_hf_repo[m.llama_model],
provider_model_id=m.provider_model_id,
provider_id="cerebras",
)
for m in model_aliases
]
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
provider_id="sentence-transformers",
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 384,
},
)
return DistributionTemplate(
name="cerebras",
distro_type="self_hosted",
description="Use Cerebras for running LLM inference",
docker_image=None,
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
default_models=default_models,
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
},
default_models=default_models + [embedding_model],
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
),
},
run_config_env_vars={
"LLAMASTACK_PORT": (
"5001",
"Port for the Llama Stack distribution server",
),
"CEREBRAS_API_KEY": (
"",
"Cerebras API Key",
),
},
)

View file

@ -0,0 +1,77 @@
version: '2'
image_name: portkey
docker_image: null
conda_env: portkey
apis:
- agents
- inference
- memory
- safety
- telemetry
providers:
inference:
- provider_id: portkey
provider_type: remote::portkey
config:
base_url: https://api.portkey.ai/v1
api_key: ${env.PORTKEY_API_KEY}
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config: {}
memory:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/portkey}/faiss_store.db
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/portkey}/agents_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: ${env.OTEL_SERVICE_NAME:llama-stack}
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/portkey/trace_store.db}
metadata_store:
namespace: null
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/portkey}/registry.db
models:
- metadata: {}
model_id: meta-llama/Llama-3.1-8B-Instruct
provider_id: portkey
provider_model_id: llama3.1-8b
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.3-70B-Instruct
provider_id: portkey
provider_model_id: llama-3.3-70b
model_type: llm
- metadata:
embedding_dimension: 384
model_id: all-MiniLM-L6-v2
provider_id: sentence-transformers
provider_model_id: null
model_type: embedding
shields:
- params: null
shield_id: meta-llama/Llama-Guard-3-8B
provider_id: null
provider_shield_id: null
memory_banks: []
datasets: []
scoring_fns: []
eval_tasks: []