metrics tests

- Add _create_metric_stub_from_protobuf method to correctly parse protobuf metrics
- Add _extract_attributes_from_data_point helper method
- Change metric handling to use protobuf-specific parsing instead of OpenTelemetry native parsing
- Add missing typing import
- Add OTEL_METRIC_EXPORT_INTERVAL environment variable for test configuration

This fixes the CI failure where metrics were not being properly extracted from
protobuf data in server mode tests.
This commit is contained in:
Emilio Garcia 2025-11-03 10:45:30 -08:00 committed by Eric Huang
parent 415fd9e36b
commit 7a19488787
8 changed files with 420 additions and 125 deletions

View file

@ -215,6 +215,7 @@ if [[ "$STACK_CONFIG" == *"server:"* && "$COLLECT_ONLY" == false ]]; then
export OTEL_EXPORTER_OTLP_PROTOCOL="http/protobuf"
export OTEL_BSP_SCHEDULE_DELAY="200"
export OTEL_BSP_EXPORT_TIMEOUT="2000"
export OTEL_METRIC_EXPORT_INTERVAL="200"
# remove "server:" from STACK_CONFIG
stack_config=$(echo "$STACK_CONFIG" | sed 's/^server://')
@ -311,6 +312,9 @@ if [[ "$STACK_CONFIG" == *"docker:"* && "$COLLECT_ONLY" == false ]]; then
DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e LLAMA_STACK_TEST_INFERENCE_MODE=$INFERENCE_MODE"
DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e LLAMA_STACK_TEST_STACK_CONFIG_TYPE=server"
DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:${COLLECTOR_PORT}"
DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e OTEL_METRIC_EXPORT_INTERVAL=200"
DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e OTEL_BSP_SCHEDULE_DELAY=200"
DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e OTEL_BSP_EXPORT_TIMEOUT=2000"
# Pass through API keys if they exist
[ -n "${TOGETHER_API_KEY:-}" ] && DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e TOGETHER_API_KEY=$TOGETHER_API_KEY"

View file

@ -427,6 +427,7 @@ _GLOBAL_STORAGE: dict[str, dict[str | int, Any]] = {
"counters": {},
"gauges": {},
"up_down_counters": {},
"histograms": {},
}
_global_lock = threading.Lock()
_TRACER_PROVIDER = None
@ -540,6 +541,16 @@ class Telemetry:
)
return cast(metrics.ObservableGauge, _GLOBAL_STORAGE["gauges"][name])
def _get_or_create_histogram(self, name: str, unit: str) -> metrics.Histogram:
assert self.meter is not None
if name not in _GLOBAL_STORAGE["histograms"]:
_GLOBAL_STORAGE["histograms"][name] = self.meter.create_histogram(
name=name,
unit=unit,
description=f"Histogram for {name}",
)
return cast(metrics.Histogram, _GLOBAL_STORAGE["histograms"][name])
def _log_metric(self, event: MetricEvent) -> None:
# Add metric as an event to the current span
try:
@ -571,7 +582,16 @@ class Telemetry:
# Log to OpenTelemetry meter if available
if self.meter is None:
return
if isinstance(event.value, int):
# Use histograms for token-related metrics (per-request measurements)
# Use counters for other cumulative metrics
token_metrics = {"prompt_tokens", "completion_tokens", "total_tokens"}
if event.metric in token_metrics:
# Token metrics are per-request measurements, use histogram
histogram = self._get_or_create_histogram(event.metric, event.unit)
histogram.record(event.value, attributes=_clean_attributes(event.attributes))
elif isinstance(event.value, int):
counter = self._get_or_create_counter(event.metric, event.unit)
counter.add(event.value, attributes=_clean_attributes(event.attributes))
elif isinstance(event.value, float):

View file

@ -84,5 +84,6 @@
}
],
"is_streaming": false
}
},
"id_normalization_mapping": {}
}

View file

@ -6,20 +6,88 @@
"""Shared helpers for telemetry test collectors."""
import time
from collections.abc import Iterable
from dataclasses import dataclass
from typing import Any
@dataclass
class SpanStub:
class MetricStub:
"""Unified metric interface for both in-memory and OTLP collectors."""
name: str
attributes: dict[str, Any]
value: Any
attributes: dict[str, Any] | None = None
@dataclass
class SpanStub:
"""Unified span interface for both in-memory and OTLP collectors."""
name: str
attributes: dict[str, Any] | None = None
resource_attributes: dict[str, Any] | None = None
events: list[dict[str, Any]] | None = None
trace_id: str | None = None
span_id: str | None = None
@property
def context(self):
"""Provide context-like interface for trace_id compatibility."""
if self.trace_id is None:
return None
return type("Context", (), {"trace_id": int(self.trace_id, 16)})()
def get_trace_id(self) -> str | None:
"""Get trace ID in hex format.
Tries context.trace_id first, then falls back to direct trace_id.
"""
context = getattr(self, "context", None)
if context and getattr(context, "trace_id", None) is not None:
return f"{context.trace_id:032x}"
return getattr(self, "trace_id", None)
def has_message(self, text: str) -> bool:
"""Check if span contains a specific message in its args."""
if self.attributes is None:
return False
args = self.attributes.get("__args__")
if not args or not isinstance(args, str):
return False
return text in args
def is_root_span(self) -> bool:
"""Check if this is a root span."""
if self.attributes is None:
return False
return self.attributes.get("__root__") is True
def is_autotraced(self) -> bool:
"""Check if this span was automatically traced."""
if self.attributes is None:
return False
return self.attributes.get("__autotraced__") is True
def get_span_type(self) -> str | None:
"""Get the span type (async, sync, async_generator)."""
if self.attributes is None:
return None
return self.attributes.get("__type__")
def get_class_method(self) -> tuple[str | None, str | None]:
"""Get the class and method names for autotraced spans."""
if self.attributes is None:
return None, None
return (self.attributes.get("__class__"), self.attributes.get("__method__"))
def get_location(self) -> str | None:
"""Get the location (library_client, server) for root spans."""
if self.attributes is None:
return None
return self.attributes.get("__location__")
def _value_to_python(value: Any) -> Any:
kind = value.WhichOneof("value")
@ -56,14 +124,18 @@ def events_to_list(events: Iterable[Any]) -> list[dict[str, Any]]:
class BaseTelemetryCollector:
"""Base class for telemetry collectors that ensures consistent return types.
All collectors must return SpanStub objects to ensure test compatibility
across both library-client and server modes.
"""
def get_spans(
self,
expected_count: int | None = None,
timeout: float = 5.0,
poll_interval: float = 0.05,
) -> tuple[Any, ...]:
import time
) -> tuple[SpanStub, ...]:
deadline = time.time() + timeout
min_count = expected_count if expected_count is not None else 1
last_len: int | None = None
@ -91,16 +163,206 @@ class BaseTelemetryCollector:
last_len = len(spans)
time.sleep(poll_interval)
def get_metrics(self) -> Any | None:
return self._snapshot_metrics()
def get_metrics(
self,
expected_count: int | None = None,
timeout: float = 5.0,
poll_interval: float = 0.05,
expect_model_id: str | None = None,
) -> dict[str, MetricStub]:
"""Get metrics with polling until metrics are available or timeout is reached."""
# metrics need to be collected since get requests delete stored metrics
deadline = time.time() + timeout
min_count = expected_count if expected_count is not None else 1
accumulated_metrics = {}
count_metrics_with_model_id = 0
while time.time() < deadline:
current_metrics = self._snapshot_metrics()
if current_metrics:
for metric in current_metrics:
metric_name = metric.name
if metric_name not in accumulated_metrics:
accumulated_metrics[metric_name] = metric
if (
expect_model_id
and metric.attributes
and metric.attributes.get("model_id") == expect_model_id
):
count_metrics_with_model_id += 1
else:
accumulated_metrics[metric_name] = metric
# Check if we have enough metrics
if len(accumulated_metrics) >= min_count:
if not expect_model_id:
return accumulated_metrics
if count_metrics_with_model_id >= min_count:
return accumulated_metrics
time.sleep(poll_interval)
return accumulated_metrics
@staticmethod
def _convert_attributes_to_dict(attrs: Any) -> dict[str, Any]:
"""Convert various attribute types to a consistent dictionary format.
Handles mappingproxy, dict, and other attribute types.
"""
if attrs is None:
return {}
try:
return dict(attrs.items()) # type: ignore[attr-defined]
except AttributeError:
try:
return dict(attrs)
except TypeError:
return dict(attrs) if attrs else {}
@staticmethod
def _extract_trace_span_ids(span: Any) -> tuple[str | None, str | None]:
"""Extract trace_id and span_id from OpenTelemetry span object.
Handles both context-based and direct attribute access.
"""
trace_id = None
span_id = None
context = getattr(span, "context", None)
if context:
trace_id = f"{context.trace_id:032x}"
span_id = f"{context.span_id:016x}"
else:
trace_id = getattr(span, "trace_id", None)
span_id = getattr(span, "span_id", None)
return trace_id, span_id
@staticmethod
def _create_span_stub_from_opentelemetry(span: Any) -> SpanStub:
"""Create SpanStub from OpenTelemetry span object.
This helper reduces code duplication between collectors.
"""
trace_id, span_id = BaseTelemetryCollector._extract_trace_span_ids(span)
attributes = BaseTelemetryCollector._convert_attributes_to_dict(span.attributes) or {}
return SpanStub(
name=span.name,
attributes=attributes,
trace_id=trace_id,
span_id=span_id,
)
@staticmethod
def _create_span_stub_from_protobuf(span: Any, resource_attrs: dict[str, Any] | None = None) -> SpanStub:
"""Create SpanStub from protobuf span object.
This helper handles the different structure of protobuf spans.
"""
attributes = attributes_to_dict(span.attributes) or {}
events = events_to_list(span.events) if span.events else None
trace_id = span.trace_id.hex() if span.trace_id else None
span_id = span.span_id.hex() if span.span_id else None
return SpanStub(
name=span.name,
attributes=attributes,
resource_attributes=resource_attrs,
events=events,
trace_id=trace_id,
span_id=span_id,
)
@staticmethod
def _extract_metric_from_opentelemetry(metric: Any) -> MetricStub | None:
"""Extract MetricStub from OpenTelemetry metric object.
This helper reduces code duplication between collectors.
"""
if not (hasattr(metric, "name") and hasattr(metric, "data") and hasattr(metric.data, "data_points")):
return None
if not (metric.data.data_points and len(metric.data.data_points) > 0):
return None
# Get the value from the first data point
data_point = metric.data.data_points[0]
# Handle different metric types
if hasattr(data_point, "value"):
# Counter or Gauge
value = data_point.value
elif hasattr(data_point, "sum"):
# Histogram - use the sum of all recorded values
value = data_point.sum
else:
return None
# Extract attributes if available
attributes = {}
if hasattr(data_point, "attributes"):
attrs = data_point.attributes
if attrs is not None and hasattr(attrs, "items"):
attributes = dict(attrs.items())
elif attrs is not None and not isinstance(attrs, dict):
attributes = dict(attrs)
return MetricStub(
name=metric.name,
value=value,
attributes=attributes or {},
)
@staticmethod
def _create_metric_stub_from_protobuf(metric: Any) -> MetricStub | None:
"""Create MetricStub from protobuf metric object.
Protobuf metrics have a different structure than OpenTelemetry metrics.
They can have sum, gauge, or histogram data.
"""
if not hasattr(metric, "name"):
return None
# Try to extract value from different metric types
for metric_type in ["sum", "gauge", "histogram"]:
if hasattr(metric, metric_type):
metric_data = getattr(metric, metric_type)
if metric_data and hasattr(metric_data, "data_points"):
data_points = metric_data.data_points
if data_points and len(data_points) > 0:
data_point = data_points[0]
# Extract attributes first (needed for all metric types)
attributes = (
attributes_to_dict(data_point.attributes) if hasattr(data_point, "attributes") else {}
)
# Extract value based on metric type
if metric_type == "sum":
value = data_point.as_int
elif metric_type == "gauge":
value = data_point.as_double
else: # histogram
value = data_point.sum
return MetricStub(
name=metric.name,
value=value,
attributes=attributes,
)
return None
def clear(self) -> None:
self._clear_impl()
def _snapshot_spans(self) -> tuple[Any, ...]: # pragma: no cover - interface hook
def _snapshot_spans(self) -> tuple[SpanStub, ...]: # pragma: no cover - interface hook
raise NotImplementedError
def _snapshot_metrics(self) -> Any | None: # pragma: no cover - interface hook
def _snapshot_metrics(self) -> tuple[MetricStub, ...] | None: # pragma: no cover - interface hook
raise NotImplementedError
def _clear_impl(self) -> None: # pragma: no cover - interface hook

View file

@ -6,8 +6,6 @@
"""In-memory telemetry collector for library-client tests."""
from typing import Any
import opentelemetry.metrics as otel_metrics
import opentelemetry.trace as otel_trace
from opentelemetry import metrics, trace
@ -19,47 +17,42 @@ from opentelemetry.sdk.trace.export.in_memory_span_exporter import InMemorySpanE
import llama_stack.core.telemetry.telemetry as telemetry_module
from .base import BaseTelemetryCollector, SpanStub
from .base import BaseTelemetryCollector, MetricStub, SpanStub
class InMemoryTelemetryCollector(BaseTelemetryCollector):
"""In-memory telemetry collector for library-client tests.
Converts OpenTelemetry span objects to SpanStub objects to ensure
consistent interface with OTLP collector used in server mode.
"""
def __init__(self, span_exporter: InMemorySpanExporter, metric_reader: InMemoryMetricReader) -> None:
self._span_exporter = span_exporter
self._metric_reader = metric_reader
def _snapshot_spans(self) -> tuple[Any, ...]:
def _snapshot_spans(self) -> tuple[SpanStub, ...]:
spans = []
for span in self._span_exporter.get_finished_spans():
trace_id = None
span_id = None
context = getattr(span, "context", None)
if context:
trace_id = f"{context.trace_id:032x}"
span_id = f"{context.span_id:016x}"
else:
trace_id = getattr(span, "trace_id", None)
span_id = getattr(span, "span_id", None)
stub = SpanStub(
span.name,
span.attributes,
getattr(span, "resource", None),
getattr(span, "events", None),
trace_id,
span_id,
)
spans.append(stub)
spans.append(self._create_span_stub_from_opentelemetry(span))
return tuple(spans)
def _snapshot_metrics(self) -> Any | None:
def _snapshot_metrics(self) -> tuple[MetricStub, ...] | None:
data = self._metric_reader.get_metrics_data()
if data and data.resource_metrics:
resource_metric = data.resource_metrics[0]
if resource_metric.scope_metrics:
return resource_metric.scope_metrics[0].metrics
if not data or not data.resource_metrics:
return None
metric_stubs = []
for resource_metric in data.resource_metrics:
if resource_metric.scope_metrics:
for scope_metric in resource_metric.scope_metrics:
for metric in scope_metric.metrics:
metric_stub = self._extract_metric_from_opentelemetry(metric)
if metric_stub:
metric_stubs.append(metric_stub)
return tuple(metric_stubs) if metric_stubs else None
def _clear_impl(self) -> None:
self._span_exporter.clear()
self._metric_reader.get_metrics_data()

View file

@ -9,20 +9,20 @@
import gzip
import os
import threading
import time
from http.server import BaseHTTPRequestHandler, HTTPServer
from socketserver import ThreadingMixIn
from typing import Any
from opentelemetry.proto.collector.metrics.v1.metrics_service_pb2 import ExportMetricsServiceRequest
from opentelemetry.proto.collector.trace.v1.trace_service_pb2 import ExportTraceServiceRequest
from .base import BaseTelemetryCollector, SpanStub, attributes_to_dict, events_to_list
from .base import BaseTelemetryCollector, MetricStub, SpanStub, attributes_to_dict
class OtlpHttpTestCollector(BaseTelemetryCollector):
def __init__(self) -> None:
self._spans: list[SpanStub] = []
self._metrics: list[Any] = []
self._metrics: list[MetricStub] = []
self._lock = threading.Lock()
class _ThreadingHTTPServer(ThreadingMixIn, HTTPServer):
@ -47,11 +47,7 @@ class OtlpHttpTestCollector(BaseTelemetryCollector):
for scope_spans in resource_spans.scope_spans:
for span in scope_spans.spans:
attributes = attributes_to_dict(span.attributes)
events = events_to_list(span.events) if span.events else None
trace_id = span.trace_id.hex() if span.trace_id else None
span_id = span.span_id.hex() if span.span_id else None
new_spans.append(SpanStub(span.name, attributes, resource_attrs or None, events, trace_id, span_id))
new_spans.append(self._create_span_stub_from_protobuf(span, resource_attrs or None))
if not new_spans:
return
@ -60,10 +56,13 @@ class OtlpHttpTestCollector(BaseTelemetryCollector):
self._spans.extend(new_spans)
def _handle_metrics(self, request: ExportMetricsServiceRequest) -> None:
new_metrics: list[Any] = []
new_metrics: list[MetricStub] = []
for resource_metrics in request.resource_metrics:
for scope_metrics in resource_metrics.scope_metrics:
new_metrics.extend(scope_metrics.metrics)
for metric in scope_metrics.metrics:
metric_stub = self._create_metric_stub_from_protobuf(metric)
if metric_stub:
new_metrics.append(metric_stub)
if not new_metrics:
return
@ -75,11 +74,40 @@ class OtlpHttpTestCollector(BaseTelemetryCollector):
with self._lock:
return tuple(self._spans)
def _snapshot_metrics(self) -> Any | None:
def _snapshot_metrics(self) -> tuple[MetricStub, ...] | None:
with self._lock:
return list(self._metrics) if self._metrics else None
return tuple(self._metrics) if self._metrics else None
def _clear_impl(self) -> None:
"""Clear telemetry over a period of time to prevent race conditions between tests."""
with self._lock:
self._spans.clear()
self._metrics.clear()
# Prevent race conditions where telemetry arrives after clear() but before
# the test starts, causing contamination between tests
deadline = time.time() + 2.0 # Maximum wait time
last_span_count = 0
last_metric_count = 0
stable_iterations = 0
while time.time() < deadline:
with self._lock:
current_span_count = len(self._spans)
current_metric_count = len(self._metrics)
if current_span_count == last_span_count and current_metric_count == last_metric_count:
stable_iterations += 1
if stable_iterations >= 4: # 4 * 50ms = 200ms of stability
break
else:
stable_iterations = 0
last_span_count = current_span_count
last_metric_count = current_metric_count
time.sleep(0.05)
# Final clear to remove any telemetry that arrived during stabilization
with self._lock:
self._spans.clear()
self._metrics.clear()

View file

@ -30,7 +30,7 @@
"index": 0,
"logprobs": null,
"message": {
"content": "import torch\nfrom transformers import AutoModelForCausalLM, AutoTokenizer\n\n# Load the pre-trained model and tokenizer\nmodel_name = \"CompVis/transformers-base-uncased\"\nmodel = AutoModelForCausalLM.from_pretrained(model_name)\ntokenizer = AutoTokenizer.from_pretrained(model_name)\n\n# Set the temperature to 0.7\ntemperature = 0.7\n\n# Define a function to generate text\ndef generate_text(prompt, max_length=100):\n input",
"content": "To test the trace function from OpenAI's API with a temperature of 0.7, you can use the following Python code:\n\n```python\nimport json\n\n# Import the required libraries\nfrom transformers import AutoModelForCausalLM, AutoTokenizer\n\n# Set the API endpoint and model name\nmodel_name = \"dalle-mini\"\n\n# Initialize the model and tokenizer\nmodel = AutoModelForCausalLM.from_pretrained(model_name)\ntokenizer = AutoTokenizer.from_pretrained(model_name)\n\n",
"refusal": null,
"role": "assistant",
"annotations": null,
@ -55,5 +55,6 @@
}
},
"is_streaming": false
}
},
"id_normalization_mapping": {}
}

View file

@ -4,48 +4,17 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""Telemetry tests verifying @trace_protocol decorator format across stack modes."""
"""Telemetry tests verifying @trace_protocol decorator format across stack modes.
Note: The mock_otlp_collector fixture automatically clears telemetry data
before and after each test, ensuring test isolation.
"""
import json
def _span_attributes(span):
attrs = getattr(span, "attributes", None)
if attrs is None:
return {}
# ReadableSpan.attributes acts like a mapping
try:
return dict(attrs.items()) # type: ignore[attr-defined]
except AttributeError:
try:
return dict(attrs)
except TypeError:
return attrs
def _span_attr(span, key):
attrs = _span_attributes(span)
return attrs.get(key)
def _span_trace_id(span):
context = getattr(span, "context", None)
if context and getattr(context, "trace_id", None) is not None:
return f"{context.trace_id:032x}"
return getattr(span, "trace_id", None)
def _span_has_message(span, text: str) -> bool:
args = _span_attr(span, "__args__")
if not args or not isinstance(args, str):
return False
return text in args
def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_model_id):
"""Verify streaming adds chunk_count and __type__=async_generator."""
mock_otlp_collector.clear()
stream = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "Test trace openai 1"}],
@ -62,16 +31,16 @@ def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_mod
(
span
for span in reversed(spans)
if _span_attr(span, "__type__") == "async_generator"
and _span_attr(span, "chunk_count")
and _span_has_message(span, "Test trace openai 1")
if span.get_span_type() == "async_generator"
and span.attributes.get("chunk_count")
and span.has_message("Test trace openai 1")
),
None,
)
assert async_generator_span is not None
raw_chunk_count = _span_attr(async_generator_span, "chunk_count")
raw_chunk_count = async_generator_span.attributes.get("chunk_count")
assert raw_chunk_count is not None
chunk_count = int(raw_chunk_count)
@ -80,7 +49,6 @@ def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_mod
def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client, text_model_id):
"""Comprehensive validation of telemetry data format including spans and metrics."""
mock_otlp_collector.clear()
response = llama_stack_client.chat.completions.create(
model=text_model_id,
@ -101,37 +69,36 @@ def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client,
# Verify spans
spans = mock_otlp_collector.get_spans(expected_count=7)
target_span = next(
(span for span in reversed(spans) if _span_has_message(span, "Test trace openai with temperature 0.7")),
(span for span in reversed(spans) if span.has_message("Test trace openai with temperature 0.7")),
None,
)
assert target_span is not None
trace_id = _span_trace_id(target_span)
trace_id = target_span.get_trace_id()
assert trace_id is not None
spans = [span for span in spans if _span_trace_id(span) == trace_id]
spans = [span for span in spans if _span_attr(span, "__root__") or _span_attr(span, "__autotraced__")]
spans = [span for span in spans if span.get_trace_id() == trace_id]
spans = [span for span in spans if span.is_root_span() or span.is_autotraced()]
assert len(spans) >= 4
# Collect all model_ids found in spans
logged_model_ids = []
for span in spans:
attrs = _span_attributes(span)
attrs = span.attributes
assert attrs is not None
# Root span is created manually by tracing middleware, not by @trace_protocol decorator
is_root_span = attrs.get("__root__") is True
if is_root_span:
assert attrs.get("__location__") in ["library_client", "server"]
if span.is_root_span():
assert span.get_location() in ["library_client", "server"]
continue
assert attrs.get("__autotraced__")
assert attrs.get("__class__") and attrs.get("__method__")
assert attrs.get("__type__") in ["async", "sync", "async_generator"]
assert span.is_autotraced()
class_name, method_name = span.get_class_method()
assert class_name and method_name
assert span.get_span_type() in ["async", "sync", "async_generator"]
args_field = attrs.get("__args__")
args_field = span.attributes.get("__args__")
if args_field:
args = json.loads(args_field)
if "model_id" in args:
@ -140,21 +107,40 @@ def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client,
# At least one span should capture the fully qualified model ID
assert text_model_id in logged_model_ids, f"Expected to find {text_model_id} in spans, but got {logged_model_ids}"
# TODO: re-enable this once metrics get fixed
"""
# Verify token usage metrics in response
metrics = mock_otlp_collector.get_metrics()
# Verify token usage metrics in response using polling
expected_metrics = ["completion_tokens", "total_tokens", "prompt_tokens"]
metrics = mock_otlp_collector.get_metrics(expected_count=len(expected_metrics), expect_model_id=text_model_id)
assert len(metrics) > 0, "No metrics found within timeout"
assert metrics
for metric in metrics:
assert metric.name in ["completion_tokens", "total_tokens", "prompt_tokens"]
assert metric.unit == "tokens"
assert metric.data.data_points and len(metric.data.data_points) == 1
match metric.name:
case "completion_tokens":
assert metric.data.data_points[0].value == usage["completion_tokens"]
case "total_tokens":
assert metric.data.data_points[0].value == usage["total_tokens"]
case "prompt_tokens":
assert metric.data.data_points[0].value == usage["prompt_tokens"
"""
# Filter metrics to only those from the specific model used in the request
# This prevents issues when multiple metrics with the same name exist from different models
# (e.g., when safety models like llama-guard are also called)
inference_model_metrics = {}
all_model_ids = set()
for name, metric in metrics.items():
if name in expected_metrics:
model_id = metric.attributes.get("model_id")
all_model_ids.add(model_id)
# Only include metrics from the specific model used in the test request
if model_id == text_model_id:
inference_model_metrics[name] = metric
# Verify expected metrics are present for our specific model
for metric_name in expected_metrics:
assert metric_name in inference_model_metrics, (
f"Expected metric {metric_name} for model {text_model_id} not found. "
f"Available models: {sorted(all_model_ids)}, "
f"Available metrics for {text_model_id}: {list(inference_model_metrics.keys())}"
)
# Verify metric values match usage data
assert inference_model_metrics["completion_tokens"].value == usage["completion_tokens"], (
f"Expected {usage['completion_tokens']} for completion_tokens, but got {inference_model_metrics['completion_tokens'].value}"
)
assert inference_model_metrics["total_tokens"].value == usage["total_tokens"], (
f"Expected {usage['total_tokens']} for total_tokens, but got {inference_model_metrics['total_tokens'].value}"
)
assert inference_model_metrics["prompt_tokens"].value == usage["prompt_tokens"], (
f"Expected {usage['prompt_tokens']} for prompt_tokens, but got {inference_model_metrics['prompt_tokens'].value}"
)