mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-23 04:53:14 +00:00
API Updates: fleshing out RAG APIs, introduce "llama stack" CLI command (#51)
* add tools to chat completion request * use templates for generating system prompts * Moved ToolPromptFormat and jinja templates to llama_models.llama3.api * <WIP> memory changes - inlined AgenticSystemInstanceConfig so API feels more ergonomic - renamed it to AgentConfig, AgentInstance -> Agent - added a MemoryConfig and `memory` parameter - added `attachments` to input and `output_attachments` to the response - some naming changes * InterleavedTextAttachment -> InterleavedTextMedia, introduce memory tool * flesh out memory banks API * agentic loop has a RAG implementation * faiss provider implementation * memory client works * re-work tool definitions, fix FastAPI issues, fix tool regressions * fix agentic_system utils * basic RAG seems to work * small bug fixes for inline attachments * Refactor custom tool execution utilities * Bug fix, show memory retrieval steps in EventLogger * No need for api_key for Remote providers * add special unicode character ↵ to showcase newlines in model prompt templates * remove api.endpoints imports * combine datatypes.py and endpoints.py into api.py * Attachment / add TTL api * split batch_inference from inference * minor import fixes * use a single impl for ChatFormat.decode_assistant_mesage * use interleaved_text_media_as_str() utilityt * Fix api.datatypes imports * Add blobfile for tiktoken * Add ToolPromptFormat to ChatFormat.encode_message so that tools are encoded properly * templates take optional --format={json,function_tag} * Rag Updates * Add `api build` subcommand -- WIP * fix * build + run image seems to work * <WIP> adapters * bunch more work to make adapters work * api build works for conda now * ollama remote adapter works * Several smaller fixes to make adapters work Also, reorganized the pattern of __init__ inside providers so configuration can stay lightweight * llama distribution -> llama stack + containers (WIP) * All the new CLI for api + stack work * Make Fireworks and Together into the Adapter format * Some quick fixes to the CLI behavior to make it consistent * Updated README phew * Update cli_reference.md * llama_toolchain/distribution -> llama_toolchain/core * Add termcolor * update paths * Add a log just for consistency * chmod +x scripts * Fix api dependencies not getting added to configuration * missing import lol * Delete utils.py; move to agentic system * Support downloading of URLs for attachments for code interpreter * Simplify and generalize `llama api build` yay * Update `llama stack configure` to be very simple also * Fix stack start * Allow building an "adhoc" distribution * Remote `llama api []` subcommands * Fixes to llama stack commands and update docs * Update documentation again and add error messages to llama stack start * llama stack start -> llama stack run * Change name of build for less confusion * Add pyopenapi fork to the repository, update RFC assets * Remove conflicting annotation * Added a "--raw" option for model template printing --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com> Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
This commit is contained in:
parent
35093c0b6f
commit
7bc7785b0d
141 changed files with 8252 additions and 4032 deletions
|
@ -4,5 +4,4 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .datatypes import * # noqa: F401 F403
|
||||
from .endpoints import * # noqa: F401 F403
|
||||
from .api import * # noqa: F401 F403
|
||||
|
|
157
llama_toolchain/memory/api/api.py
Normal file
157
llama_toolchain/memory/api/api.py
Normal file
|
@ -0,0 +1,157 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List, Optional, Protocol
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class MemoryBankDocument(BaseModel):
|
||||
document_id: str
|
||||
content: InterleavedTextMedia | URL
|
||||
mime_type: str
|
||||
metadata: Dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class MemoryBankType(Enum):
|
||||
vector = "vector"
|
||||
keyvalue = "keyvalue"
|
||||
keyword = "keyword"
|
||||
graph = "graph"
|
||||
|
||||
|
||||
class VectorMemoryBankConfig(BaseModel):
|
||||
type: Literal[MemoryBankType.vector.value] = MemoryBankType.vector.value
|
||||
embedding_model: str
|
||||
chunk_size_in_tokens: int
|
||||
overlap_size_in_tokens: Optional[int] = None
|
||||
|
||||
|
||||
class KeyValueMemoryBankConfig(BaseModel):
|
||||
type: Literal[MemoryBankType.keyvalue.value] = MemoryBankType.keyvalue.value
|
||||
|
||||
|
||||
class KeywordMemoryBankConfig(BaseModel):
|
||||
type: Literal[MemoryBankType.keyword.value] = MemoryBankType.keyword.value
|
||||
|
||||
|
||||
class GraphMemoryBankConfig(BaseModel):
|
||||
type: Literal[MemoryBankType.graph.value] = MemoryBankType.graph.value
|
||||
|
||||
|
||||
MemoryBankConfig = Annotated[
|
||||
Union[
|
||||
VectorMemoryBankConfig,
|
||||
KeyValueMemoryBankConfig,
|
||||
KeywordMemoryBankConfig,
|
||||
GraphMemoryBankConfig,
|
||||
],
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
|
||||
|
||||
class Chunk(BaseModel):
|
||||
content: InterleavedTextMedia
|
||||
token_count: int
|
||||
document_id: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class QueryDocumentsResponse(BaseModel):
|
||||
chunks: List[Chunk]
|
||||
scores: List[float]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class QueryAPI(Protocol):
|
||||
@webmethod(route="/query_documents")
|
||||
def query_documents(
|
||||
self,
|
||||
query: InterleavedTextMedia,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse: ...
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class MemoryBank(BaseModel):
|
||||
bank_id: str
|
||||
name: str
|
||||
config: MemoryBankConfig
|
||||
# if there's a pre-existing (reachable-from-distribution) store which supports QueryAPI
|
||||
url: Optional[URL] = None
|
||||
|
||||
|
||||
class Memory(Protocol):
|
||||
@webmethod(route="/memory_banks/create")
|
||||
async def create_memory_bank(
|
||||
self,
|
||||
name: str,
|
||||
config: MemoryBankConfig,
|
||||
url: Optional[URL] = None,
|
||||
) -> MemoryBank: ...
|
||||
|
||||
@webmethod(route="/memory_banks/list", method="GET")
|
||||
async def list_memory_banks(self) -> List[MemoryBank]: ...
|
||||
|
||||
@webmethod(route="/memory_banks/get", method="GET")
|
||||
async def get_memory_bank(self, bank_id: str) -> Optional[MemoryBank]: ...
|
||||
|
||||
@webmethod(route="/memory_banks/drop", method="DELETE")
|
||||
async def drop_memory_bank(
|
||||
self,
|
||||
bank_id: str,
|
||||
) -> str: ...
|
||||
|
||||
# this will just block now until documents are inserted, but it should
|
||||
# probably return a Job instance which can be polled for completion
|
||||
@webmethod(route="/memory_bank/insert")
|
||||
async def insert_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
) -> None: ...
|
||||
|
||||
@webmethod(route="/memory_bank/update")
|
||||
async def update_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
) -> None: ...
|
||||
|
||||
@webmethod(route="/memory_bank/query")
|
||||
async def query_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
query: InterleavedTextMedia,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse: ...
|
||||
|
||||
@webmethod(route="/memory_bank/documents/get", method="GET")
|
||||
async def get_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
document_ids: List[str],
|
||||
) -> List[MemoryBankDocument]: ...
|
||||
|
||||
@webmethod(route="/memory_bank/documents/delete", method="DELETE")
|
||||
async def delete_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
document_ids: List[str],
|
||||
) -> None: ...
|
|
@ -1,61 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List, Protocol
|
||||
|
||||
from llama_models.schema_utils import webmethod
|
||||
|
||||
from .datatypes import * # noqa: F403
|
||||
|
||||
|
||||
class MemoryBanks(Protocol):
|
||||
@webmethod(route="/memory_banks/create")
|
||||
def create_memory_bank(
|
||||
self,
|
||||
bank_id: str,
|
||||
bank_name: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
) -> None: ...
|
||||
|
||||
@webmethod(route="/memory_banks/list")
|
||||
def get_memory_banks(self) -> List[MemoryBank]: ...
|
||||
|
||||
@webmethod(route="/memory_banks/get")
|
||||
def get_memory_bank(self, bank_id: str) -> List[MemoryBank]: ...
|
||||
|
||||
@webmethod(route="/memory_banks/drop")
|
||||
def delete_memory_bank(
|
||||
self,
|
||||
bank_id: str,
|
||||
) -> str: ...
|
||||
|
||||
@webmethod(route="/memory_bank/insert")
|
||||
def insert_memory_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
) -> None: ...
|
||||
|
||||
@webmethod(route="/memory_bank/update")
|
||||
def update_memory_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
) -> None: ...
|
||||
|
||||
@webmethod(route="/memory_bank/get")
|
||||
def get_memory_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
document_uuids: List[str],
|
||||
) -> List[MemoryBankDocument]: ...
|
||||
|
||||
@webmethod(route="/memory_bank/delete")
|
||||
def delete_memory_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
document_uuids: List[str],
|
||||
) -> List[str]: ...
|
181
llama_toolchain/memory/client.py
Normal file
181
llama_toolchain/memory/client.py
Normal file
|
@ -0,0 +1,181 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import fire
|
||||
import httpx
|
||||
|
||||
from llama_toolchain.core.datatypes import RemoteProviderConfig
|
||||
|
||||
from .api import * # noqa: F403
|
||||
|
||||
|
||||
async def get_client_impl(config: RemoteProviderConfig, _deps: Any) -> Memory:
|
||||
return MemoryClient(config.url)
|
||||
|
||||
|
||||
class MemoryClient(Memory):
|
||||
def __init__(self, base_url: str):
|
||||
self.base_url = base_url
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def get_memory_bank(self, bank_id: str) -> Optional[MemoryBank]:
|
||||
async with httpx.AsyncClient() as client:
|
||||
r = await client.get(
|
||||
f"{self.base_url}/memory_banks/get",
|
||||
params={
|
||||
"bank_id": bank_id,
|
||||
},
|
||||
headers={"Content-Type": "application/json"},
|
||||
timeout=20,
|
||||
)
|
||||
r.raise_for_status()
|
||||
d = r.json()
|
||||
if not d:
|
||||
return None
|
||||
return MemoryBank(**d)
|
||||
|
||||
async def create_memory_bank(
|
||||
self,
|
||||
name: str,
|
||||
config: MemoryBankConfig,
|
||||
url: Optional[URL] = None,
|
||||
) -> MemoryBank:
|
||||
async with httpx.AsyncClient() as client:
|
||||
r = await client.post(
|
||||
f"{self.base_url}/memory_banks/create",
|
||||
json={
|
||||
"name": name,
|
||||
"config": config.dict(),
|
||||
"url": url,
|
||||
},
|
||||
headers={"Content-Type": "application/json"},
|
||||
timeout=20,
|
||||
)
|
||||
r.raise_for_status()
|
||||
d = r.json()
|
||||
if not d:
|
||||
return None
|
||||
return MemoryBank(**d)
|
||||
|
||||
async def insert_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
) -> None:
|
||||
async with httpx.AsyncClient() as client:
|
||||
r = await client.post(
|
||||
f"{self.base_url}/memory_bank/insert",
|
||||
json={
|
||||
"bank_id": bank_id,
|
||||
"documents": [d.dict() for d in documents],
|
||||
},
|
||||
headers={"Content-Type": "application/json"},
|
||||
timeout=20,
|
||||
)
|
||||
r.raise_for_status()
|
||||
|
||||
async def query_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
query: InterleavedTextMedia,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse:
|
||||
async with httpx.AsyncClient() as client:
|
||||
r = await client.post(
|
||||
f"{self.base_url}/memory_bank/query",
|
||||
json={
|
||||
"bank_id": bank_id,
|
||||
"query": query,
|
||||
"params": params,
|
||||
},
|
||||
headers={"Content-Type": "application/json"},
|
||||
timeout=20,
|
||||
)
|
||||
r.raise_for_status()
|
||||
return QueryDocumentsResponse(**r.json())
|
||||
|
||||
|
||||
async def run_main(host: str, port: int, stream: bool):
|
||||
client = MemoryClient(f"http://{host}:{port}")
|
||||
|
||||
# create a memory bank
|
||||
bank = await client.create_memory_bank(
|
||||
name="test_bank",
|
||||
config=VectorMemoryBankConfig(
|
||||
bank_id="test_bank",
|
||||
embedding_model="dragon-roberta-query-2",
|
||||
chunk_size_in_tokens=512,
|
||||
overlap_size_in_tokens=64,
|
||||
),
|
||||
)
|
||||
print(bank)
|
||||
|
||||
retrieved_bank = await client.get_memory_bank(bank.bank_id)
|
||||
assert retrieved_bank is not None
|
||||
assert retrieved_bank.config.embedding_model == "dragon-roberta-query-2"
|
||||
|
||||
urls = [
|
||||
"memory_optimizations.rst",
|
||||
"chat.rst",
|
||||
"llama3.rst",
|
||||
"datasets.rst",
|
||||
"qat_finetune.rst",
|
||||
"lora_finetune.rst",
|
||||
]
|
||||
documents = [
|
||||
MemoryBankDocument(
|
||||
document_id=f"num-{i}",
|
||||
content=URL(
|
||||
uri=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}"
|
||||
),
|
||||
mime_type="text/plain",
|
||||
)
|
||||
for i, url in enumerate(urls)
|
||||
]
|
||||
|
||||
# insert some documents
|
||||
await client.insert_documents(
|
||||
bank_id=bank.bank_id,
|
||||
documents=documents,
|
||||
)
|
||||
|
||||
# query the documents
|
||||
response = await client.query_documents(
|
||||
bank_id=bank.bank_id,
|
||||
query=[
|
||||
"How do I use Lora?",
|
||||
],
|
||||
)
|
||||
for chunk, score in zip(response.chunks, response.scores):
|
||||
print(f"Score: {score}")
|
||||
print(f"Chunk:\n========\n{chunk}\n========\n")
|
||||
|
||||
response = await client.query_documents(
|
||||
bank_id=bank.bank_id,
|
||||
query=[
|
||||
"Tell me more about llama3 and torchtune",
|
||||
],
|
||||
)
|
||||
for chunk, score in zip(response.chunks, response.scores):
|
||||
print(f"Score: {score}")
|
||||
print(f"Chunk:\n========\n{chunk}\n========\n")
|
||||
|
||||
|
||||
def main(host: str, port: int, stream: bool = True):
|
||||
asyncio.run(run_main(host, port, stream))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(main)
|
5
llama_toolchain/memory/meta_reference/__init__.py
Normal file
5
llama_toolchain/memory/meta_reference/__init__.py
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
19
llama_toolchain/memory/meta_reference/faiss/__init__.py
Normal file
19
llama_toolchain/memory/meta_reference/faiss/__init__.py
Normal file
|
@ -0,0 +1,19 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .config import FaissImplConfig
|
||||
|
||||
|
||||
async def get_provider_impl(config: FaissImplConfig, _deps):
|
||||
from .faiss import FaissMemoryImpl
|
||||
|
||||
assert isinstance(
|
||||
config, FaissImplConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
|
||||
impl = FaissMemoryImpl(config)
|
||||
await impl.initialize()
|
||||
return impl
|
|
@ -4,22 +4,10 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class MemoryBank(BaseModel):
|
||||
memory_bank_id: str
|
||||
memory_bank_name: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class MemoryBankDocument(BaseModel):
|
||||
document_id: str
|
||||
content: bytes
|
||||
metadata: Dict[str, Any]
|
||||
mime_type: str
|
||||
class FaissImplConfig(BaseModel): ...
|
194
llama_toolchain/memory/meta_reference/faiss/faiss.py
Normal file
194
llama_toolchain/memory/meta_reference/faiss/faiss.py
Normal file
|
@ -0,0 +1,194 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import uuid
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import faiss
|
||||
import httpx
|
||||
import numpy as np
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from llama_toolchain.memory.api import * # noqa: F403
|
||||
from .config import FaissImplConfig
|
||||
|
||||
|
||||
async def content_from_doc(doc: MemoryBankDocument) -> str:
|
||||
if isinstance(doc.content, URL):
|
||||
async with httpx.AsyncClient() as client:
|
||||
r = await client.get(doc.content.uri)
|
||||
return r.text
|
||||
|
||||
return interleaved_text_media_as_str(doc.content)
|
||||
|
||||
|
||||
def make_overlapped_chunks(
|
||||
text: str, window_len: int, overlap_len: int
|
||||
) -> List[Tuple[str, int]]:
|
||||
tokenizer = Tokenizer.get_instance()
|
||||
tokens = tokenizer.encode(text, bos=False, eos=False)
|
||||
|
||||
chunks = []
|
||||
for i in range(0, len(tokens), window_len - overlap_len):
|
||||
toks = tokens[i : i + window_len]
|
||||
chunk = tokenizer.decode(toks)
|
||||
chunks.append((chunk, len(toks)))
|
||||
|
||||
return chunks
|
||||
|
||||
|
||||
@dataclass
|
||||
class BankState:
|
||||
bank: MemoryBank
|
||||
index: Optional[faiss.IndexFlatL2] = None
|
||||
doc_by_id: Dict[str, MemoryBankDocument] = field(default_factory=dict)
|
||||
id_by_index: Dict[int, str] = field(default_factory=dict)
|
||||
chunk_by_index: Dict[int, str] = field(default_factory=dict)
|
||||
|
||||
async def insert_documents(
|
||||
self,
|
||||
model: "SentenceTransformer",
|
||||
documents: List[MemoryBankDocument],
|
||||
) -> None:
|
||||
tokenizer = Tokenizer.get_instance()
|
||||
chunk_size = self.bank.config.chunk_size_in_tokens
|
||||
|
||||
for doc in documents:
|
||||
indexlen = len(self.id_by_index)
|
||||
self.doc_by_id[doc.document_id] = doc
|
||||
|
||||
content = await content_from_doc(doc)
|
||||
chunks = make_overlapped_chunks(
|
||||
content,
|
||||
self.bank.config.chunk_size_in_tokens,
|
||||
self.bank.config.overlap_size_in_tokens
|
||||
or (self.bank.config.chunk_size_in_tokens // 4),
|
||||
)
|
||||
embeddings = model.encode([x[0] for x in chunks]).astype(np.float32)
|
||||
await self._ensure_index(embeddings.shape[1])
|
||||
|
||||
self.index.add(embeddings)
|
||||
for i, chunk in enumerate(chunks):
|
||||
self.chunk_by_index[indexlen + i] = Chunk(
|
||||
content=chunk[0],
|
||||
token_count=chunk[1],
|
||||
document_id=doc.document_id,
|
||||
)
|
||||
print(f"Adding chunk #{indexlen + i} tokens={chunk[1]}")
|
||||
self.id_by_index[indexlen + i] = doc.document_id
|
||||
|
||||
async def query_documents(
|
||||
self,
|
||||
model: "SentenceTransformer",
|
||||
query: InterleavedTextMedia,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse:
|
||||
if params is None:
|
||||
params = {}
|
||||
k = params.get("max_chunks", 3)
|
||||
|
||||
def _process(c) -> str:
|
||||
if isinstance(c, str):
|
||||
return c
|
||||
else:
|
||||
return "<media>"
|
||||
|
||||
if isinstance(query, list):
|
||||
query_str = " ".join([_process(c) for c in query])
|
||||
else:
|
||||
query_str = _process(query)
|
||||
|
||||
query_vector = model.encode([query_str])[0]
|
||||
distances, indices = self.index.search(
|
||||
query_vector.reshape(1, -1).astype(np.float32), k
|
||||
)
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
for d, i in zip(distances[0], indices[0]):
|
||||
if i < 0:
|
||||
continue
|
||||
chunks.append(self.chunk_by_index[int(i)])
|
||||
scores.append(1.0 / float(d))
|
||||
|
||||
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def _ensure_index(self, dimension: int) -> faiss.IndexFlatL2:
|
||||
if self.index is None:
|
||||
self.index = faiss.IndexFlatL2(dimension)
|
||||
return self.index
|
||||
|
||||
|
||||
class FaissMemoryImpl(Memory):
|
||||
def __init__(self, config: FaissImplConfig) -> None:
|
||||
self.config = config
|
||||
self.model = None
|
||||
self.states = {}
|
||||
|
||||
async def initialize(self) -> None: ...
|
||||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
async def create_memory_bank(
|
||||
self,
|
||||
name: str,
|
||||
config: MemoryBankConfig,
|
||||
url: Optional[URL] = None,
|
||||
) -> MemoryBank:
|
||||
assert url is None, "URL is not supported for this implementation"
|
||||
assert (
|
||||
config.type == MemoryBankType.vector.value
|
||||
), f"Only vector banks are supported {config.type}"
|
||||
|
||||
bank_id = str(uuid.uuid4())
|
||||
bank = MemoryBank(
|
||||
bank_id=bank_id,
|
||||
name=name,
|
||||
config=config,
|
||||
url=url,
|
||||
)
|
||||
state = BankState(bank=bank)
|
||||
self.states[bank_id] = state
|
||||
return bank
|
||||
|
||||
async def get_memory_bank(self, bank_id: str) -> Optional[MemoryBank]:
|
||||
if bank_id not in self.states:
|
||||
return None
|
||||
return self.states[bank_id].bank
|
||||
|
||||
async def insert_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
) -> None:
|
||||
assert bank_id in self.states, f"Bank {bank_id} not found"
|
||||
state = self.states[bank_id]
|
||||
|
||||
await state.insert_documents(self.get_model(), documents)
|
||||
|
||||
async def query_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
query: InterleavedTextMedia,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse:
|
||||
assert bank_id in self.states, f"Bank {bank_id} not found"
|
||||
state = self.states[bank_id]
|
||||
|
||||
return await state.query_documents(self.get_model(), query, params)
|
||||
|
||||
def get_model(self) -> "SentenceTransformer":
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
if self.model is None:
|
||||
print("Loading sentence transformer")
|
||||
self.model = SentenceTransformer("all-MiniLM-L6-v2")
|
||||
|
||||
return self.model
|
25
llama_toolchain/memory/providers.py
Normal file
25
llama_toolchain/memory/providers.py
Normal file
|
@ -0,0 +1,25 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List
|
||||
|
||||
from llama_toolchain.core.datatypes import Api, InlineProviderSpec, ProviderSpec
|
||||
|
||||
|
||||
def available_memory_providers() -> List[ProviderSpec]:
|
||||
return [
|
||||
InlineProviderSpec(
|
||||
api=Api.memory,
|
||||
provider_id="meta-reference-faiss",
|
||||
pip_packages=[
|
||||
"blobfile",
|
||||
"faiss-cpu",
|
||||
"sentence-transformers",
|
||||
],
|
||||
module="llama_toolchain.memory.meta_reference.faiss",
|
||||
config_class="llama_toolchain.memory.meta_reference.faiss.FaissImplConfig",
|
||||
),
|
||||
]
|
Loading…
Add table
Add a link
Reference in a new issue