feat: Add ChunkMetadata to Chunk (#2497)

# What does this PR do?
Adding `ChunkMetadata` so we can properly delete embeddings later.

More specifically, this PR refactors and extends the chunk metadata
handling in the vector database and introduces a distinction between
metadata used for model context and backend-only metadata required for
chunk management, storage, and retrieval. It also improves chunk ID
generation and propagation throughout the stack, enhances test coverage,
and adds new utility modules.

```python
class ChunkMetadata(BaseModel):
    """
    `ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional information about the chunk that
        will NOT be inserted into the context during inference, but is required for backend functionality.
        Use `metadata` in `Chunk` for metadata that will be used during inference.
    """
    document_id: str | None = None
    chunk_id: str | None = None
    source: str | None = None
    created_timestamp: int | None = None
    updated_timestamp: int | None = None
    chunk_window: str | None = None
    chunk_tokenizer: str | None = None
    chunk_embedding_model: str | None = None
    chunk_embedding_dimension: int | None = None
    content_token_count: int | None = None
    metadata_token_count: int | None = None
```
Eventually we can migrate the document_id out of the `metadata` field.
I've introduced the changes so that `ChunkMetadata` is backwards
compatible with `metadata`.

<!-- If resolving an issue, uncomment and update the line below -->
Closes https://github.com/meta-llama/llama-stack/issues/2501 

## Test Plan
Added unit tests

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
Francisco Arceo 2025-06-25 13:55:23 -06:00 committed by GitHub
parent fa0b0c13d4
commit 82f13fe83e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
14 changed files with 490 additions and 218 deletions

View file

@ -11190,6 +11190,115 @@
],
"title": "InsertRequest"
},
"Chunk": {
"type": "object",
"properties": {
"content": {
"$ref": "#/components/schemas/InterleavedContent",
"description": "The content of the chunk, which can be interleaved text, images, or other types."
},
"metadata": {
"type": "object",
"additionalProperties": {
"oneOf": [
{
"type": "null"
},
{
"type": "boolean"
},
{
"type": "number"
},
{
"type": "string"
},
{
"type": "array"
},
{
"type": "object"
}
]
},
"description": "Metadata associated with the chunk that will be used in the model context during inference."
},
"embedding": {
"type": "array",
"items": {
"type": "number"
},
"description": "Optional embedding for the chunk. If not provided, it will be computed later."
},
"stored_chunk_id": {
"type": "string",
"description": "The chunk ID that is stored in the vector database. Used for backend functionality."
},
"chunk_metadata": {
"$ref": "#/components/schemas/ChunkMetadata",
"description": "Metadata for the chunk that will NOT be used in the context during inference. The `chunk_metadata` is required backend functionality."
}
},
"additionalProperties": false,
"required": [
"content",
"metadata"
],
"title": "Chunk",
"description": "A chunk of content that can be inserted into a vector database."
},
"ChunkMetadata": {
"type": "object",
"properties": {
"chunk_id": {
"type": "string",
"description": "The ID of the chunk. If not set, it will be generated based on the document ID and content."
},
"document_id": {
"type": "string",
"description": "The ID of the document this chunk belongs to."
},
"source": {
"type": "string",
"description": "The source of the content, such as a URL, file path, or other identifier."
},
"created_timestamp": {
"type": "integer",
"description": "An optional timestamp indicating when the chunk was created."
},
"updated_timestamp": {
"type": "integer",
"description": "An optional timestamp indicating when the chunk was last updated."
},
"chunk_window": {
"type": "string",
"description": "The window of the chunk, which can be used to group related chunks together."
},
"chunk_tokenizer": {
"type": "string",
"description": "The tokenizer used to create the chunk. Default is Tiktoken."
},
"chunk_embedding_model": {
"type": "string",
"description": "The embedding model used to create the chunk's embedding."
},
"chunk_embedding_dimension": {
"type": "integer",
"description": "The dimension of the embedding vector for the chunk."
},
"content_token_count": {
"type": "integer",
"description": "The number of tokens in the content of the chunk."
},
"metadata_token_count": {
"type": "integer",
"description": "The number of tokens in the metadata of the chunk."
}
},
"additionalProperties": false,
"title": "ChunkMetadata",
"description": "`ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional information about the chunk that will not be used in the context during inference, but is required for backend functionality. The `ChunkMetadata` is set during chunk creation in `MemoryToolRuntimeImpl().insert()`and is not expected to change after. Use `Chunk.metadata` for metadata that will be used in the context during inference."
},
"InsertChunksRequest": {
"type": "object",
"properties": {
@ -11200,53 +11309,7 @@
"chunks": {
"type": "array",
"items": {
"type": "object",
"properties": {
"content": {
"$ref": "#/components/schemas/InterleavedContent",
"description": "The content of the chunk, which can be interleaved text, images, or other types."
},
"metadata": {
"type": "object",
"additionalProperties": {
"oneOf": [
{
"type": "null"
},
{
"type": "boolean"
},
{
"type": "number"
},
{
"type": "string"
},
{
"type": "array"
},
{
"type": "object"
}
]
},
"description": "Metadata associated with the chunk, such as document ID, source, or other relevant information."
},
"embedding": {
"type": "array",
"items": {
"type": "number"
},
"description": "Optional embedding for the chunk. If not provided, it will be computed later."
}
},
"additionalProperties": false,
"required": [
"content",
"metadata"
],
"title": "Chunk",
"description": "A chunk of content that can be inserted into a vector database."
"$ref": "#/components/schemas/Chunk"
},
"description": "The chunks to insert. Each `Chunk` should contain content which can be interleaved text, images, or other types. `metadata`: `dict[str, Any]` and `embedding`: `List[float]` are optional. If `metadata` is provided, you configure how Llama Stack formats the chunk during generation. If `embedding` is not provided, it will be computed later."
},
@ -14671,53 +14734,7 @@
"chunks": {
"type": "array",
"items": {
"type": "object",
"properties": {
"content": {
"$ref": "#/components/schemas/InterleavedContent",
"description": "The content of the chunk, which can be interleaved text, images, or other types."
},
"metadata": {
"type": "object",
"additionalProperties": {
"oneOf": [
{
"type": "null"
},
{
"type": "boolean"
},
{
"type": "number"
},
{
"type": "string"
},
{
"type": "array"
},
{
"type": "object"
}
]
},
"description": "Metadata associated with the chunk, such as document ID, source, or other relevant information."
},
"embedding": {
"type": "array",
"items": {
"type": "number"
},
"description": "Optional embedding for the chunk. If not provided, it will be computed later."
}
},
"additionalProperties": false,
"required": [
"content",
"metadata"
],
"title": "Chunk",
"description": "A chunk of content that can be inserted into a vector database."
"$ref": "#/components/schemas/Chunk"
}
},
"scores": {

View file

@ -7867,6 +7867,107 @@ components:
- vector_db_id
- chunk_size_in_tokens
title: InsertRequest
Chunk:
type: object
properties:
content:
$ref: '#/components/schemas/InterleavedContent'
description: >-
The content of the chunk, which can be interleaved text, images, or other
types.
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
Metadata associated with the chunk that will be used in the model context
during inference.
embedding:
type: array
items:
type: number
description: >-
Optional embedding for the chunk. If not provided, it will be computed
later.
stored_chunk_id:
type: string
description: >-
The chunk ID that is stored in the vector database. Used for backend functionality.
chunk_metadata:
$ref: '#/components/schemas/ChunkMetadata'
description: >-
Metadata for the chunk that will NOT be used in the context during inference.
The `chunk_metadata` is required backend functionality.
additionalProperties: false
required:
- content
- metadata
title: Chunk
description: >-
A chunk of content that can be inserted into a vector database.
ChunkMetadata:
type: object
properties:
chunk_id:
type: string
description: >-
The ID of the chunk. If not set, it will be generated based on the document
ID and content.
document_id:
type: string
description: >-
The ID of the document this chunk belongs to.
source:
type: string
description: >-
The source of the content, such as a URL, file path, or other identifier.
created_timestamp:
type: integer
description: >-
An optional timestamp indicating when the chunk was created.
updated_timestamp:
type: integer
description: >-
An optional timestamp indicating when the chunk was last updated.
chunk_window:
type: string
description: >-
The window of the chunk, which can be used to group related chunks together.
chunk_tokenizer:
type: string
description: >-
The tokenizer used to create the chunk. Default is Tiktoken.
chunk_embedding_model:
type: string
description: >-
The embedding model used to create the chunk's embedding.
chunk_embedding_dimension:
type: integer
description: >-
The dimension of the embedding vector for the chunk.
content_token_count:
type: integer
description: >-
The number of tokens in the content of the chunk.
metadata_token_count:
type: integer
description: >-
The number of tokens in the metadata of the chunk.
additionalProperties: false
title: ChunkMetadata
description: >-
`ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional
information about the chunk that will not be used in the context during
inference, but is required for backend functionality. The `ChunkMetadata` is
set during chunk creation in `MemoryToolRuntimeImpl().insert()`and is not
expected to change after. Use `Chunk.metadata` for metadata that will
be used in the context during inference.
InsertChunksRequest:
type: object
properties:
@ -7877,40 +7978,7 @@ components:
chunks:
type: array
items:
type: object
properties:
content:
$ref: '#/components/schemas/InterleavedContent'
description: >-
The content of the chunk, which can be interleaved text, images,
or other types.
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
Metadata associated with the chunk, such as document ID, source,
or other relevant information.
embedding:
type: array
items:
type: number
description: >-
Optional embedding for the chunk. If not provided, it will be computed
later.
additionalProperties: false
required:
- content
- metadata
title: Chunk
description: >-
A chunk of content that can be inserted into a vector database.
$ref: '#/components/schemas/Chunk'
description: >-
The chunks to insert. Each `Chunk` should contain content which can be
interleaved text, images, or other types. `metadata`: `dict[str, Any]`
@ -10231,40 +10299,7 @@ components:
chunks:
type: array
items:
type: object
properties:
content:
$ref: '#/components/schemas/InterleavedContent'
description: >-
The content of the chunk, which can be interleaved text, images,
or other types.
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
Metadata associated with the chunk, such as document ID, source,
or other relevant information.
embedding:
type: array
items:
type: number
description: >-
Optional embedding for the chunk. If not provided, it will be computed
later.
additionalProperties: false
required:
- content
- metadata
title: Chunk
description: >-
A chunk of content that can be inserted into a vector database.
$ref: '#/components/schemas/Chunk'
scores:
type: array
items:

View file

@ -8,6 +8,7 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import uuid
from typing import Annotated, Any, Literal, Protocol, runtime_checkable
from pydantic import BaseModel, Field
@ -15,21 +16,80 @@ from pydantic import BaseModel, Field
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.providers.utils.vector_io.chunk_utils import generate_chunk_id
from llama_stack.schema_utils import json_schema_type, webmethod
from llama_stack.strong_typing.schema import register_schema
@json_schema_type
class ChunkMetadata(BaseModel):
"""
`ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional information about the chunk that
will not be used in the context during inference, but is required for backend functionality. The `ChunkMetadata`
is set during chunk creation in `MemoryToolRuntimeImpl().insert()`and is not expected to change after.
Use `Chunk.metadata` for metadata that will be used in the context during inference.
:param chunk_id: The ID of the chunk. If not set, it will be generated based on the document ID and content.
:param document_id: The ID of the document this chunk belongs to.
:param source: The source of the content, such as a URL, file path, or other identifier.
:param created_timestamp: An optional timestamp indicating when the chunk was created.
:param updated_timestamp: An optional timestamp indicating when the chunk was last updated.
:param chunk_window: The window of the chunk, which can be used to group related chunks together.
:param chunk_tokenizer: The tokenizer used to create the chunk. Default is Tiktoken.
:param chunk_embedding_model: The embedding model used to create the chunk's embedding.
:param chunk_embedding_dimension: The dimension of the embedding vector for the chunk.
:param content_token_count: The number of tokens in the content of the chunk.
:param metadata_token_count: The number of tokens in the metadata of the chunk.
"""
chunk_id: str | None = None
document_id: str | None = None
source: str | None = None
created_timestamp: int | None = None
updated_timestamp: int | None = None
chunk_window: str | None = None
chunk_tokenizer: str | None = None
chunk_embedding_model: str | None = None
chunk_embedding_dimension: int | None = None
content_token_count: int | None = None
metadata_token_count: int | None = None
@json_schema_type
class Chunk(BaseModel):
"""
A chunk of content that can be inserted into a vector database.
:param content: The content of the chunk, which can be interleaved text, images, or other types.
:param embedding: Optional embedding for the chunk. If not provided, it will be computed later.
:param metadata: Metadata associated with the chunk, such as document ID, source, or other relevant information.
:param metadata: Metadata associated with the chunk that will be used in the model context during inference.
:param stored_chunk_id: The chunk ID that is stored in the vector database. Used for backend functionality.
:param chunk_metadata: Metadata for the chunk that will NOT be used in the context during inference.
The `chunk_metadata` is required backend functionality.
"""
content: InterleavedContent
metadata: dict[str, Any] = Field(default_factory=dict)
embedding: list[float] | None = None
# The alias parameter serializes the field as "chunk_id" in JSON but keeps the internal name as "stored_chunk_id"
stored_chunk_id: str | None = Field(default=None, alias="chunk_id")
chunk_metadata: ChunkMetadata | None = None
model_config = {"populate_by_name": True}
def model_post_init(self, __context):
# Extract chunk_id from metadata if present
if self.metadata and "chunk_id" in self.metadata:
self.stored_chunk_id = self.metadata.pop("chunk_id")
@property
def chunk_id(self) -> str:
"""Returns the chunk ID, which is either an input `chunk_id` or a generated one if not set."""
if self.stored_chunk_id:
return self.stored_chunk_id
if "document_id" in self.metadata:
return generate_chunk_id(self.metadata["document_id"], str(self.content))
return generate_chunk_id(str(uuid.uuid4()), str(self.content))
@json_schema_type

View file

@ -81,6 +81,7 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
chunks = []
for doc in documents:
content = await content_from_doc(doc)
# TODO: we should add enrichment here as URLs won't be added to the metadata by default
chunks.extend(
make_overlapped_chunks(
doc.document_id,
@ -157,8 +158,24 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
)
break
metadata_subset = {k: v for k, v in metadata.items() if k not in ["token_count", "metadata_token_count"]}
text_content = query_config.chunk_template.format(index=i + 1, chunk=chunk, metadata=metadata_subset)
# Add useful keys from chunk_metadata to metadata and remove some from metadata
chunk_metadata_keys_to_include_from_context = [
"chunk_id",
"document_id",
"source",
]
metadata_keys_to_exclude_from_context = [
"token_count",
"metadata_token_count",
]
metadata_for_context = {}
for k in chunk_metadata_keys_to_include_from_context:
metadata_for_context[k] = getattr(chunk.chunk_metadata, k)
for k in metadata:
if k not in metadata_keys_to_exclude_from_context:
metadata_for_context[k] = metadata[k]
text_content = query_config.chunk_template.format(index=i + 1, chunk=chunk, metadata=metadata_for_context)
picked.append(TextContentItem(text=text_content))
picked.append(TextContentItem(text="END of knowledge_search tool results.\n"))

View file

@ -5,12 +5,10 @@
# the root directory of this source tree.
import asyncio
import hashlib
import json
import logging
import sqlite3
import struct
import uuid
from typing import Any
import numpy as np
@ -201,10 +199,7 @@ class SQLiteVecIndex(EmbeddingIndex):
batch_embeddings = embeddings[i : i + batch_size]
# Insert metadata
metadata_data = [
(generate_chunk_id(chunk.metadata["document_id"], chunk.content), chunk.model_dump_json())
for chunk in batch_chunks
]
metadata_data = [(chunk.chunk_id, chunk.model_dump_json()) for chunk in batch_chunks]
cur.executemany(
f"""
INSERT INTO {self.metadata_table} (id, chunk)
@ -218,7 +213,7 @@ class SQLiteVecIndex(EmbeddingIndex):
embedding_data = [
(
(
generate_chunk_id(chunk.metadata["document_id"], chunk.content),
chunk.chunk_id,
serialize_vector(emb.tolist()),
)
)
@ -230,10 +225,7 @@ class SQLiteVecIndex(EmbeddingIndex):
)
# Insert FTS content
fts_data = [
(generate_chunk_id(chunk.metadata["document_id"], chunk.content), chunk.content)
for chunk in batch_chunks
]
fts_data = [(chunk.chunk_id, chunk.content) for chunk in batch_chunks]
# DELETE existing entries with same IDs (FTS5 doesn't support ON CONFLICT)
cur.executemany(
f"DELETE FROM {self.fts_table} WHERE id = ?;",
@ -381,13 +373,12 @@ class SQLiteVecIndex(EmbeddingIndex):
vector_response = await self.query_vector(embedding, k, score_threshold)
keyword_response = await self.query_keyword(query_string, k, score_threshold)
# Convert responses to score dictionaries using generate_chunk_id
# Convert responses to score dictionaries using chunk_id
vector_scores = {
generate_chunk_id(chunk.metadata["document_id"], str(chunk.content)): score
for chunk, score in zip(vector_response.chunks, vector_response.scores, strict=False)
chunk.chunk_id: score for chunk, score in zip(vector_response.chunks, vector_response.scores, strict=False)
}
keyword_scores = {
generate_chunk_id(chunk.metadata["document_id"], str(chunk.content)): score
chunk.chunk_id: score
for chunk, score in zip(keyword_response.chunks, keyword_response.scores, strict=False)
}
@ -408,13 +399,7 @@ class SQLiteVecIndex(EmbeddingIndex):
filtered_items = [(doc_id, score) for doc_id, score in top_k_items if score >= score_threshold]
# Create a map of chunk_id to chunk for both responses
chunk_map = {}
for c in vector_response.chunks:
chunk_id = generate_chunk_id(c.metadata["document_id"], str(c.content))
chunk_map[chunk_id] = c
for c in keyword_response.chunks:
chunk_id = generate_chunk_id(c.metadata["document_id"], str(c.content))
chunk_map[chunk_id] = c
chunk_map = {c.chunk_id: c for c in vector_response.chunks + keyword_response.chunks}
# Use the map to look up chunks by their IDs
chunks = []
@ -757,9 +742,3 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
if vector_db_id not in self.cache:
raise ValueError(f"Vector DB {vector_db_id} not found")
return await self.cache[vector_db_id].query_chunks(query, params)
def generate_chunk_id(document_id: str, chunk_text: str) -> str:
"""Generate a unique chunk ID using a hash of document ID and chunk text."""
hash_input = f"{document_id}:{chunk_text}".encode()
return str(uuid.UUID(hashlib.md5(hash_input).hexdigest()))

View file

@ -70,8 +70,8 @@ class QdrantIndex(EmbeddingIndex):
)
points = []
for i, (chunk, embedding) in enumerate(zip(chunks, embeddings, strict=False)):
chunk_id = f"{chunk.metadata['document_id']}:chunk-{i}"
for _i, (chunk, embedding) in enumerate(zip(chunks, embeddings, strict=False)):
chunk_id = chunk.chunk_id
points.append(
PointStruct(
id=convert_id(chunk_id),

View file

@ -7,6 +7,7 @@ import base64
import io
import logging
import re
import time
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any
@ -23,12 +24,13 @@ from llama_stack.apis.common.content_types import (
)
from llama_stack.apis.tools import RAGDocument
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse
from llama_stack.apis.vector_io import Chunk, ChunkMetadata, QueryChunksResponse
from llama_stack.models.llama.llama3.tokenizer import Tokenizer
from llama_stack.providers.datatypes import Api
from llama_stack.providers.utils.inference.prompt_adapter import (
interleaved_content_as_str,
)
from llama_stack.providers.utils.vector_io.chunk_utils import generate_chunk_id
log = logging.getLogger(__name__)
@ -148,6 +150,7 @@ async def content_from_doc(doc: RAGDocument) -> str:
def make_overlapped_chunks(
document_id: str, text: str, window_len: int, overlap_len: int, metadata: dict[str, Any]
) -> list[Chunk]:
default_tokenizer = "DEFAULT_TIKTOKEN_TOKENIZER"
tokenizer = Tokenizer.get_instance()
tokens = tokenizer.encode(text, bos=False, eos=False)
try:
@ -161,16 +164,32 @@ def make_overlapped_chunks(
for i in range(0, len(tokens), window_len - overlap_len):
toks = tokens[i : i + window_len]
chunk = tokenizer.decode(toks)
chunk_id = generate_chunk_id(chunk, text)
chunk_metadata = metadata.copy()
chunk_metadata["chunk_id"] = chunk_id
chunk_metadata["document_id"] = document_id
chunk_metadata["token_count"] = len(toks)
chunk_metadata["metadata_token_count"] = len(metadata_tokens)
backend_chunk_metadata = ChunkMetadata(
chunk_id=chunk_id,
document_id=document_id,
source=metadata.get("source", None),
created_timestamp=metadata.get("created_timestamp", int(time.time())),
updated_timestamp=int(time.time()),
chunk_window=f"{i}-{i + len(toks)}",
chunk_tokenizer=default_tokenizer,
chunk_embedding_model=None, # This will be set in `VectorDBWithIndex.insert_chunks`
content_token_count=len(toks),
metadata_token_count=len(metadata_tokens),
)
# chunk is a string
chunks.append(
Chunk(
content=chunk,
metadata=chunk_metadata,
chunk_metadata=backend_chunk_metadata,
)
)
@ -237,6 +256,9 @@ class VectorDBWithIndex:
for i, c in enumerate(chunks):
if c.embedding is None:
chunks_to_embed.append(c)
if c.chunk_metadata:
c.chunk_metadata.chunk_embedding_model = self.vector_db.embedding_model
c.chunk_metadata.chunk_embedding_dimension = self.vector_db.embedding_dimension
else:
_validate_embedding(c.embedding, i, self.vector_db.embedding_dimension)

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,14 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import hashlib
import uuid
def generate_chunk_id(document_id: str, chunk_text: str) -> str:
"""Generate a unique chunk ID using a hash of document ID and chunk text."""
hash_input = f"{document_id}:{chunk_text}".encode()
return str(uuid.UUID(hashlib.md5(hash_input).hexdigest()))

View file

@ -9,7 +9,7 @@ import random
import numpy as np
import pytest
from llama_stack.apis.vector_io import Chunk
from llama_stack.apis.vector_io import Chunk, ChunkMetadata
EMBEDDING_DIMENSION = 384
@ -33,6 +33,20 @@ def sample_chunks():
for j in range(k)
for i in range(n)
]
sample.extend(
[
Chunk(
content=f"Sentence {i} from document {j + k}",
chunk_metadata=ChunkMetadata(
document_id=f"document-{j + k}",
chunk_id=f"document-{j}-chunk-{i}",
source=f"example source-{j + k}-{i}",
),
)
for j in range(k)
for i in range(n)
]
)
return sample

View file

@ -0,0 +1,66 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.vector_io import Chunk, ChunkMetadata
from llama_stack.providers.utils.vector_io.chunk_utils import generate_chunk_id
# This test is a unit test for the chunk_utils.py helpers. This should only contain
# tests which are specific to this file. More general (API-level) tests should be placed in
# tests/integration/vector_io/
#
# How to run this test:
#
# pytest tests/unit/providers/vector_io/test_chunk_utils.py \
# -v -s --tb=short --disable-warnings --asyncio-mode=auto
def test_generate_chunk_id():
chunks = [
Chunk(content="test", metadata={"document_id": "doc-1"}),
Chunk(content="test ", metadata={"document_id": "doc-1"}),
Chunk(content="test 3", metadata={"document_id": "doc-1"}),
]
chunk_ids = sorted([chunk.chunk_id for chunk in chunks])
assert chunk_ids == [
"177a1368-f6a8-0c50-6e92-18677f2c3de3",
"bc744db3-1b25-0a9c-cdff-b6ba3df73c36",
"f68df25d-d9aa-ab4d-5684-64a233add20d",
]
def test_chunk_id():
# Test with existing chunk ID
chunk_with_id = Chunk(content="test", metadata={"document_id": "existing-id"})
assert chunk_with_id.chunk_id == "84ededcc-b80b-a83e-1a20-ca6515a11350"
# Test with document ID in metadata
chunk_with_doc_id = Chunk(content="test", metadata={"document_id": "doc-1"})
assert chunk_with_doc_id.chunk_id == generate_chunk_id("doc-1", "test")
# Test chunks with ChunkMetadata
chunk_with_metadata = Chunk(
content="test",
metadata={"document_id": "existing-id", "chunk_id": "chunk-id-1"},
chunk_metadata=ChunkMetadata(document_id="document_1"),
)
assert chunk_with_metadata.chunk_id == "chunk-id-1"
# Test with no ID or document ID
chunk_without_id = Chunk(content="test")
generated_id = chunk_without_id.chunk_id
assert isinstance(generated_id, str) and len(generated_id) == 36 # Should be a valid UUID
def test_stored_chunk_id_alias():
# Test with existing chunk ID alias
chunk_with_alias = Chunk(content="test", metadata={"document_id": "existing-id", "chunk_id": "chunk-id-1"})
assert chunk_with_alias.chunk_id == "chunk-id-1"
serialized_chunk = chunk_with_alias.model_dump()
assert serialized_chunk["stored_chunk_id"] == "chunk-id-1"
# showing chunk_id is not serialized (i.e., a computed field)
assert "chunk_id" not in serialized_chunk
assert chunk_with_alias.stored_chunk_id == "chunk-id-1"

View file

@ -81,7 +81,7 @@ __QUERY = "Sample query"
@pytest.mark.asyncio
@pytest.mark.parametrize("max_query_chunks, expected_chunks", [(2, 2), (100, 30)])
@pytest.mark.parametrize("max_query_chunks, expected_chunks", [(2, 2), (100, 60)])
async def test_qdrant_adapter_returns_expected_chunks(
qdrant_adapter: QdrantVectorIOAdapter,
vector_db_id,

View file

@ -15,7 +15,6 @@ from llama_stack.providers.inline.vector_io.sqlite_vec.sqlite_vec import (
SQLiteVecIndex,
SQLiteVecVectorIOAdapter,
_create_sqlite_connection,
generate_chunk_id,
)
# This test is a unit test for the SQLiteVecVectorIOAdapter class. This should only contain
@ -65,6 +64,14 @@ async def test_query_chunks_vector(sqlite_vec_index, sample_chunks, sample_embed
assert len(response.chunks) == 2
@pytest.mark.xfail(reason="Chunk Metadata not yet supported for SQLite-vec", strict=True)
async def test_query_chunk_metadata(sqlite_vec_index, sample_chunks, sample_embeddings):
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
query_embedding = sample_embeddings[0]
response = await sqlite_vec_index.query_vector(query_embedding, k=2, score_threshold=0.0)
assert response.chunks[-1].chunk_metadata == sample_chunks[-1].chunk_metadata
@pytest.mark.asyncio
async def test_query_chunks_full_text_search(sqlite_vec_index, sample_chunks, sample_embeddings):
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
@ -150,21 +157,6 @@ async def sqlite_vec_adapter(sqlite_connection):
await adapter.shutdown()
def test_generate_chunk_id():
chunks = [
Chunk(content="test", metadata={"document_id": "doc-1"}),
Chunk(content="test ", metadata={"document_id": "doc-1"}),
Chunk(content="test 3", metadata={"document_id": "doc-1"}),
]
chunk_ids = sorted([generate_chunk_id(chunk.metadata["document_id"], chunk.content) for chunk in chunks])
assert chunk_ids == [
"177a1368-f6a8-0c50-6e92-18677f2c3de3",
"bc744db3-1b25-0a9c-cdff-b6ba3df73c36",
"f68df25d-d9aa-ab4d-5684-64a233add20d",
]
@pytest.mark.asyncio
async def test_query_chunks_hybrid_no_keyword_matches(sqlite_vec_index, sample_chunks, sample_embeddings):
"""Test hybrid search when keyword search returns no matches - should still return vector results."""
@ -339,7 +331,7 @@ async def test_query_chunks_hybrid_mixed_results(sqlite_vec_index, sample_chunks
# Verify scores are in descending order
assert all(response.scores[i] >= response.scores[i + 1] for i in range(len(response.scores) - 1))
# Verify we get results from both the vector-similar document and keyword-matched document
doc_ids = {chunk.metadata["document_id"] for chunk in response.chunks}
doc_ids = {chunk.metadata.get("document_id") or chunk.chunk_metadata.document_id for chunk in response.chunks}
assert "document-0" in doc_ids # From vector search
assert "document-2" in doc_ids # From keyword search
@ -364,7 +356,11 @@ async def test_query_chunks_hybrid_weighted_reranker_parametrization(
reranker_params={"alpha": 1.0},
)
assert len(response.chunks) > 0 # Should get at least one result
assert any("document-0" in chunk.metadata["document_id"] for chunk in response.chunks)
assert any(
"document-0"
in (chunk.metadata.get("document_id") or (chunk.chunk_metadata.document_id if chunk.chunk_metadata else ""))
for chunk in response.chunks
)
# alpha=0.0 (should behave like pure vector)
response = await sqlite_vec_index.query_hybrid(
@ -389,7 +385,11 @@ async def test_query_chunks_hybrid_weighted_reranker_parametrization(
reranker_params={"alpha": 0.7},
)
assert len(response.chunks) > 0 # Should get at least one result
assert any("document-0" in chunk.metadata["document_id"] for chunk in response.chunks)
assert any(
"document-0"
in (chunk.metadata.get("document_id") or (chunk.chunk_metadata.document_id if chunk.chunk_metadata else ""))
for chunk in response.chunks
)
@pytest.mark.asyncio

View file

@ -4,10 +4,15 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from unittest.mock import MagicMock
from unittest.mock import AsyncMock, MagicMock
import pytest
from llama_stack.apis.vector_io import (
Chunk,
ChunkMetadata,
QueryChunksResponse,
)
from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRuntimeImpl
@ -17,3 +22,41 @@ class TestRagQuery:
rag_tool = MemoryToolRuntimeImpl(config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock())
with pytest.raises(ValueError):
await rag_tool.query(content=MagicMock(), vector_db_ids=[])
@pytest.mark.asyncio
async def test_query_chunk_metadata_handling(self):
rag_tool = MemoryToolRuntimeImpl(config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock())
content = "test query content"
vector_db_ids = ["db1"]
chunk_metadata = ChunkMetadata(
document_id="doc1",
chunk_id="chunk1",
source="test_source",
metadata_token_count=5,
)
interleaved_content = MagicMock()
chunk = Chunk(
content=interleaved_content,
metadata={
"key1": "value1",
"token_count": 10,
"metadata_token_count": 5,
# Note this is inserted into `metadata` during MemoryToolRuntimeImpl().insert()
"document_id": "doc1",
},
stored_chunk_id="chunk1",
chunk_metadata=chunk_metadata,
)
query_response = QueryChunksResponse(chunks=[chunk], scores=[1.0])
rag_tool.vector_io_api.query_chunks = AsyncMock(return_value=query_response)
result = await rag_tool.query(content=content, vector_db_ids=vector_db_ids)
assert result is not None
expected_metadata_string = (
"Metadata: {'chunk_id': 'chunk1', 'document_id': 'doc1', 'source': 'test_source', 'key1': 'value1'}"
)
assert expected_metadata_string in result.content[1].text
assert result.content is not None