Update the "InterleavedTextMedia" type (#635)

## What does this PR do?

This is a long-pending change and particularly important to get done
now.

Specifically:
- we cannot "localize" (aka download) any URLs from media attachments
anywhere near our modeling code. it must be done within llama-stack.
- `PIL.Image` is infesting all our APIs via `ImageMedia ->
InterleavedTextMedia` and that cannot be right at all. Anything in the
API surface must be "naturally serializable". We need a standard `{
type: "image", image_url: "<...>" }` which is more extensible
- `UserMessage`, `SystemMessage`, etc. are moved completely to
llama-stack from the llama-models repository.

See https://github.com/meta-llama/llama-models/pull/244 for the
corresponding PR in llama-models.

## Test Plan

```bash
cd llama_stack/providers/tests

pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py
pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py
pytest -s -v -k chroma memory/test_memory.py \
  --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar

pytest -s -v -k fireworks agents/test_agents.py  \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct
```

Updated the client sdk (see PR ...), installed the SDK in the same
environment and then ran the SDK tests:

```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py
LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py

# this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly
INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py
```
This commit is contained in:
Ashwin Bharambe 2024-12-17 11:18:31 -08:00 committed by GitHub
parent 10eb31badf
commit 8de8eb03c8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
66 changed files with 1344 additions and 1801 deletions

View file

@ -10,21 +10,24 @@ import uuid
from botocore.client import BaseClient
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import ToolParamDefinition
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
content_has_media,
interleaved_content_as_str,
)
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.remote.inference.bedrock.config import BedrockConfig
from llama_stack.providers.utils.bedrock.client import create_bedrock_client
from llama_stack.providers.utils.inference.prompt_adapter import content_has_media
MODEL_ALIASES = [
@ -65,7 +68,7 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
@ -450,7 +453,7 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
model = await self.model_store.get_model(model_id)
embeddings = []
@ -458,7 +461,7 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
assert not content_has_media(
content
), "Bedrock does not support media for embeddings"
input_text = interleaved_text_media_as_str(content)
input_text = interleaved_content_as_str(content)
input_body = {"inputText": input_text}
body = json.dumps(input_body)
response = self.client.invoke_model(

View file

@ -10,7 +10,6 @@ from cerebras.cloud.sdk import AsyncCerebras
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.apis.inference import * # noqa: F403
@ -70,7 +69,7 @@ class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
@ -167,11 +166,11 @@ class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
raise ValueError("`top_k` not supported by Cerebras")
prompt = ""
if type(request) == ChatCompletionRequest:
if isinstance(request, ChatCompletionRequest):
prompt = chat_completion_request_to_prompt(
request, self.get_llama_model(request.model), self.formatter
)
elif type(request) == CompletionRequest:
elif isinstance(request, CompletionRequest):
prompt = completion_request_to_prompt(request, self.formatter)
else:
raise ValueError(f"Unknown request type {type(request)}")
@ -186,6 +185,6 @@ class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()

View file

@ -10,7 +10,6 @@ from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from openai import OpenAI
@ -63,7 +62,7 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
async def completion(
self,
model: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
@ -136,6 +135,6 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
async def embeddings(
self,
model: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()

View file

@ -10,7 +10,6 @@ from fireworks.client import Fireworks
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.distribution.request_headers import NeedsRequestProviderData
@ -19,6 +18,7 @@ from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
convert_message_to_openai_dict,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
@ -29,7 +29,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
content_has_media,
convert_message_to_dict,
interleaved_content_as_str,
request_has_media,
)
@ -108,7 +108,7 @@ class FireworksInferenceAdapter(
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
@ -238,7 +238,7 @@ class FireworksInferenceAdapter(
if isinstance(request, ChatCompletionRequest):
if media_present:
input_dict["messages"] = [
await convert_message_to_dict(m) for m in request.messages
await convert_message_to_openai_dict(m) for m in request.messages
]
else:
input_dict["prompt"] = chat_completion_request_to_prompt(
@ -265,7 +265,7 @@ class FireworksInferenceAdapter(
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
model = await self.model_store.get_model(model_id)
@ -277,7 +277,7 @@ class FireworksInferenceAdapter(
), "Fireworks does not support media for embeddings"
response = self._get_client().embeddings.create(
model=model.provider_resource_id,
input=[interleaved_text_media_as_str(content) for content in contents],
input=[interleaved_content_as_str(content) for content in contents],
**kwargs,
)

View file

@ -8,14 +8,7 @@ import warnings
from typing import AsyncIterator, List, Optional, Union
from llama_models.datatypes import SamplingParams
from llama_models.llama3.api.datatypes import (
ImageMedia,
InterleavedTextMedia,
Message,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_models.llama3.api.datatypes import ToolDefinition, ToolPromptFormat
from llama_models.sku_list import CoreModelId
from openai import APIConnectionError, AsyncOpenAI
@ -28,13 +21,17 @@ from llama_stack.apis.inference import (
CompletionResponseStreamChunk,
EmbeddingsResponse,
Inference,
InterleavedContent,
LogProbConfig,
Message,
ResponseFormat,
ToolChoice,
)
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.prompt_adapter import content_has_media
from . import NVIDIAConfig
from .openai_utils import (
@ -123,17 +120,14 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
if isinstance(content, ImageMedia) or (
isinstance(content, list)
and any(isinstance(c, ImageMedia) for c in content)
):
raise NotImplementedError("ImageMedia is not supported")
if content_has_media(content):
raise NotImplementedError("Media is not supported")
await check_health(self._config) # this raises errors
@ -165,7 +159,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()

View file

@ -11,7 +11,6 @@ import httpx
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from ollama import AsyncClient
@ -22,8 +21,8 @@ from llama_stack.providers.utils.inference.model_registry import (
)
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.common.content_types import ImageContentItem, TextContentItem
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
OpenAICompatCompletionChoice,
@ -37,7 +36,8 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
content_has_media,
convert_image_media_to_url,
convert_image_content_to_url,
interleaved_content_as_str,
request_has_media,
)
@ -89,7 +89,7 @@ model_aliases = [
CoreModelId.llama3_2_11b_vision_instruct.value,
),
build_model_alias_with_just_provider_model_id(
"llama3.2-vision",
"llama3.2-vision:latest",
CoreModelId.llama3_2_11b_vision_instruct.value,
),
build_model_alias(
@ -141,7 +141,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
@ -234,7 +234,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
if isinstance(request, ChatCompletionRequest):
if media_present:
contents = [
await convert_message_to_dict_for_ollama(m)
await convert_message_to_openai_dict_for_ollama(m)
for m in request.messages
]
# flatten the list of lists
@ -320,7 +320,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
model = await self.model_store.get_model(model_id)
@ -329,7 +329,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
), "Ollama does not support media for embeddings"
response = await self.client.embed(
model=model.provider_resource_id,
input=[interleaved_text_media_as_str(content) for content in contents],
input=[interleaved_content_as_str(content) for content in contents],
)
embeddings = response["embeddings"]
@ -358,21 +358,23 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
return model
async def convert_message_to_dict_for_ollama(message: Message) -> List[dict]:
async def convert_message_to_openai_dict_for_ollama(message: Message) -> List[dict]:
async def _convert_content(content) -> dict:
if isinstance(content, ImageMedia):
if isinstance(content, ImageContentItem):
return {
"role": message.role,
"images": [
await convert_image_media_to_url(
await convert_image_content_to_url(
content, download=True, include_format=False
)
],
}
else:
text = content.text if isinstance(content, TextContentItem) else content
assert isinstance(text, str)
return {
"role": message.role,
"content": content,
"content": text,
}
if isinstance(message.content, list):

View file

@ -83,7 +83,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
@ -267,7 +267,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()

View file

@ -10,7 +10,6 @@ from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from together import Together
@ -22,6 +21,7 @@ from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
convert_message_to_openai_dict,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
@ -32,7 +32,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
content_has_media,
convert_message_to_dict,
interleaved_content_as_str,
request_has_media,
)
@ -92,7 +92,7 @@ class TogetherInferenceAdapter(
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
@ -230,7 +230,7 @@ class TogetherInferenceAdapter(
if isinstance(request, ChatCompletionRequest):
if media_present:
input_dict["messages"] = [
await convert_message_to_dict(m) for m in request.messages
await convert_message_to_openai_dict(m) for m in request.messages
]
else:
input_dict["prompt"] = chat_completion_request_to_prompt(
@ -252,7 +252,7 @@ class TogetherInferenceAdapter(
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
model = await self.model_store.get_model(model_id)
assert all(
@ -260,7 +260,7 @@ class TogetherInferenceAdapter(
), "Together does not support media for embeddings"
r = self._get_client().embeddings.create(
model=model.provider_resource_id,
input=[interleaved_text_media_as_str(content) for content in contents],
input=[interleaved_content_as_str(content) for content in contents],
)
embeddings = [item.embedding for item in r.data]
return EmbeddingsResponse(embeddings=embeddings)

View file

@ -8,7 +8,6 @@ import logging
from typing import AsyncGenerator
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_models.sku_list import all_registered_models
@ -22,6 +21,7 @@ from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
convert_message_to_openai_dict,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
@ -30,7 +30,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
content_has_media,
convert_message_to_dict,
interleaved_content_as_str,
request_has_media,
)
@ -71,7 +71,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
@ -163,7 +163,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
if media_present:
# vllm does not seem to work well with image urls, so we download the images
input_dict["messages"] = [
await convert_message_to_dict(m, download=True)
await convert_message_to_openai_dict(m, download=True)
for m in request.messages
]
else:
@ -202,7 +202,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
model = await self.model_store.get_model(model_id)
@ -215,7 +215,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
), "VLLM does not support media for embeddings"
response = self.client.embeddings.create(
model=model.provider_resource_id,
input=[interleaved_text_media_as_str(content) for content in contents],
input=[interleaved_content_as_str(content) for content in contents],
**kwargs,
)