wip add datatypes

This commit is contained in:
Xi Yan 2024-10-10 19:56:19 -07:00
parent 99ed1425fc
commit 9816c9aae6
5 changed files with 175 additions and 57 deletions

View file

@ -13,20 +13,59 @@ from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from typing_extensions import Annotated from typing_extensions import Annotated
TDatasetRow = TypeVar("TDatasetRow") # A sample (row) from raw dataset
TDatasetSample = TypeVar("TDatasetSample")
@json_schema_type @json_schema_type
class DatasetRow(BaseModel): ... class DatasetSample(BaseModel): ...
@json_schema_type @json_schema_type
class DictSample(DatasetRow): class DictSample(DatasetSample):
data: Dict[str, Any] data: Dict[str, Any]
@json_schema_type @json_schema_type
class Generation(BaseModel): ... class ProcessedDictSample(DatasetSample):
data: Dict[str, Any]
preprocessed: Dict[str, Any]
prediction: Dict[str, Any]
postprocessed: Dict[str, Any]
# # A sample (row) after preprocessing the raw dataset
# TPreprocessedSample = TypeVar("TPreprocessedSample")
# @json_schema_type
# class PreprocessedSample(BaseModel): ...
# @json_schema_type
# class InferencePreprocessedSample(PreprocessedSample):
# # TODO: either keep it generic or specific to inference API
# # messages: List[Message]
# data: Dict[str, Any]
# # A sample (row) from model prediction output
# TPredictionSample = TypeVar("TPredictionSample")
# @json_schema_type
# class PredictionSample(BaseModel): ...
# @json_schema_type
# class InferencePredictionSample(PredictionSample):
# data: Dict[str, Any]
# # A sample (row) from post-processed output
# TPostprocessedSample = TypeVar("TPostprocessedSample")
# @json_schema_type
# class PostprocessedSample(BaseModel): ...
# @json_schema_type
# class InferencePostprocessedSample(PredictionSample):
# data: Dict[str, Any]
@json_schema_type @json_schema_type
@ -70,16 +109,17 @@ DatasetDef = Annotated[
] ]
class BaseDataset(ABC, Generic[TDatasetRow]): class BaseDataset(ABC, Generic[TDatasetSample]):
def __init__(self) -> None: def __init__(self) -> None:
self.type: str = self.__class__.__name__ self.type: str = self.__class__.__name__
@property
@abstractmethod @abstractmethod
def __iter__(self) -> Iterator[TDatasetRow]: def dataset_id(self) -> str:
raise NotImplementedError() raise NotImplementedError()
@abstractmethod @abstractmethod
def load(self) -> None: def __iter__(self) -> Iterator[TDatasetSample]:
raise NotImplementedError() raise NotImplementedError()
@abstractmethod @abstractmethod
@ -90,6 +130,10 @@ class BaseDataset(ABC, Generic[TDatasetRow]):
def __len__(self) -> int: def __len__(self) -> int:
raise NotImplementedError() raise NotImplementedError()
@abstractmethod
def load(self) -> None:
raise NotImplementedError()
class Datasets(Protocol): class Datasets(Protocol):
@webmethod(route="/datasets/create") @webmethod(route="/datasets/create")

View file

@ -4,10 +4,10 @@
# This source code is licensed under the terms described in the LICENSE file in # This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree. # the root directory of this source tree.
from typing import Protocol from abc import ABC, abstractmethod
from typing import Dict, Generic, List, Protocol
from llama_models.schema_utils import webmethod from llama_models.schema_utils import webmethod
from pydantic import BaseModel from pydantic import BaseModel
from llama_models.llama3.api.datatypes import * # noqa: F403 from llama_models.llama3.api.datatypes import * # noqa: F403
@ -22,19 +22,26 @@ class EvaluationJobLogStream(BaseModel):
job_uuid: str job_uuid: str
class EvaluateTaskConfig(BaseModel): @json_schema_type
# num examples to evaluate, evaluate all if None class EvalResult(BaseModel):
n_samples: Optional[int] = None """Evaluation result."""
# model evaluation params
sampling_params: SamplingParams = SamplingParams() metrics: Dict[str, str]
@json_schema_type
class SingleEvalResult(BaseModel):
"""Single evaluation result."""
score_data: Dict[str, float]
@json_schema_type @json_schema_type
class EvaluateResponse(BaseModel): class EvaluateResponse(BaseModel):
"""Scores for evaluation.""" """Scores for evaluation."""
preprocess_output: GenerationOutput eval_result: EvalResult
metrics: Dict[str, str] formatted_report: Optional[str] = None
@json_schema_type @json_schema_type
@ -56,6 +63,75 @@ class EvaluationJobCreateResponse(BaseModel):
job_uuid: str job_uuid: str
@json_schema_type
class EvaluateTaskConfig(BaseModel):
# num examples to evaluate, evaluate all if None
n_samples: Optional[int] = None
# model evaluation params
sampling_params: SamplingParams = SamplingParams()
class BaseTask(
ABC,
Generic[
TDatasetSample,
TPreprocessedSample,
TPredictionSample,
TPostprocessedSample,
TSingleEvalResult,
],
):
"""
A task represents a single evaluation benchmark, including it's dataset, preprocessing, postprocessing and scoring methods.
Base class for all evaluation tasks. Each task needs to implement the following methods:
- F1: preprocess_sample(self)
- F2: postprocess_sample(self)
- F3: score_sample(self)
"""
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self._name = self.__class__.__name__
@abstractmethod
def preprocess_sample(self, sample: TDatasetSample) -> TPreprocessedSample:
raise NotImplementedError()
@abstractmethod
def postprocess_sample(self, sample: TPredictionSample) -> TPostprocessedSample:
raise NotImplementedError()
@abstractmethod
def score_sample(
self, sample: TPostprocessedSample, ground_truth: TPreprocessedSample
):
raise NotImplementedError()
@abstractmethod
def aggregate_results(self, eval_results: List[SingleEvalResult]) -> EvalResult:
raise NotImplementedError()
def preprocess(
self, dataset: BaseDataset[TDatasetSample]
) -> List[TPreprocessedSample]:
return [self.preprocess_sample(sample) for sample in self.dataset]
def postprocess(
self, generation: List[TPredictionSample]
) -> List[TPostprocessedSample]:
return [self.postprocess_sample(sample) for sample in generation]
def score(
self,
postprocessed: List[TPostprocessedSample],
preprocessed_dataset: List[TPreprocessedSample],
) -> List[TSingleEvalResult]:
return [
self.score_sample(sample, ground_truth)
for sample, ground_truth in zip(postprocessed, self.preprocessed_dataset)
]
class Evals(Protocol): class Evals(Protocol):
@webmethod(route="/evals/run") @webmethod(route="/evals/run")
async def run_evals( async def run_evals(

View file

@ -5,19 +5,25 @@
# the root directory of this source tree. # the root directory of this source tree.
# TODO: make these import config based # TODO: make these import config based
# from .dataset import CustomDataset, HFDataset from llama_stack.apis.dataset import * # noqa: F403
# from .dataset_registry import DatasetRegistry from .dataset import CustomDataset, HuggingfaceDataset
from .dataset_registry import DatasetRegistry
# DATASETS_REGISTRY = { DATASETS_REGISTRY = [
# "mmlu-simple-eval-en": CustomDataset( CustomDataset(
# name="mmlu_eval", config=CustomDatasetDef(
# url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv", identifier="mmlu-simple-eval-en",
# ), url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
# "hellaswag": HFDataset( )
# name="hellaswag", ),
# url="hf://hellaswag?split=validation&trust_remote_code=True", HuggingfaceDataset(
# ), config=HuggingfaceDatasetDef(
# } identifier="hellaswag",
dataset_name="hellaswag",
kwargs={"split": "validation", "trust_remote_code": True},
)
),
]
# for k, v in DATASETS_REGISTRY.items(): for d in DATASETS_REGISTRY:
# DatasetRegistry.register(k, v) DatasetRegistry.register(d.dataset_id, d)

View file

@ -16,17 +16,14 @@ class CustomDataset(BaseDataset[DictSample]):
self.dataset = None self.dataset = None
self.index = 0 self.index = 0
def __iter__(self) -> Iterator[DictSample]: @property
return self def dataset_id(self) -> str:
return self.config.identifier
def __next__(self) -> DictSample: def __iter__(self) -> Iterator[DictSample]:
if not self.dataset: if not self.dataset:
self.load() self.load()
if self.index >= len(self.dataset): return (DictSample(data=x) for x in self.dataset)
raise StopIteration
sample = DictSample(data=self.dataset[self.index])
self.index += 1
return sample
def __str__(self): def __str__(self):
return f"CustomDataset({self.config})" return f"CustomDataset({self.config})"
@ -53,19 +50,15 @@ class HuggingfaceDataset(BaseDataset[DictSample]):
super().__init__() super().__init__()
self.config = config self.config = config
self.dataset = None self.dataset = None
self.index = 0
@property
def dataset_id(self) -> str:
return self.config.identifier
def __iter__(self) -> Iterator[DictSample]: def __iter__(self) -> Iterator[DictSample]:
return self
def __next__(self) -> DictSample:
if not self.dataset: if not self.dataset:
self.load() self.load()
if self.index >= len(self.dataset): return (DictSample(data=x) for x in self.dataset)
raise StopIteration
sample = DictSample(data=self.dataset[self.index])
self.index += 1
return sample
def __str__(self): def __str__(self):
return f"HuggingfaceDataset({self.config})" return f"HuggingfaceDataset({self.config})"
@ -79,12 +72,3 @@ class HuggingfaceDataset(BaseDataset[DictSample]):
if self.dataset: if self.dataset:
return return
self.dataset = load_dataset(self.config.dataset_name, **self.config.kwargs) self.dataset = load_dataset(self.config.dataset_name, **self.config.kwargs)
# parsed = urlparse(self.url)
# if parsed.scheme != "hf":
# raise ValueError(f"Unknown HF dataset: {self.url}")
# query = parse_qs(parsed.query)
# query = {k: v[0] for k, v in query.items()}
# path = parsed.netloc
# self.dataset = load_dataset(path, **query)

View file

@ -111,7 +111,14 @@ def normalize_extracted_answer(extracted_answer: str) -> str:
) )
class MMLUTask(BaseTask): class MMLUTask(
BaseTask[
DictSample,
InferencePreprocessedSample,
InferencePredictionSample,
InferencePostprocessedSample,
]
):
""" """
MMLU Task. MMLU Task.
""" """
@ -120,6 +127,7 @@ class MMLUTask(BaseTask):
super().__init__(dataset, *args, **kwargs) super().__init__(dataset, *args, **kwargs)
def preprocess_sample(self, sample): def preprocess_sample(self, sample):
print(sample)
content = QUERY_TEMPLATE_MULTICHOICE.format(**sample) content = QUERY_TEMPLATE_MULTICHOICE.format(**sample)
return { return {
"role": "user", "role": "user",