mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 07:14:20 +00:00
wip add datatypes
This commit is contained in:
parent
99ed1425fc
commit
9816c9aae6
5 changed files with 175 additions and 57 deletions
|
@ -13,20 +13,59 @@ from llama_models.schema_utils import json_schema_type, webmethod
|
|||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Annotated
|
||||
|
||||
TDatasetRow = TypeVar("TDatasetRow")
|
||||
# A sample (row) from raw dataset
|
||||
TDatasetSample = TypeVar("TDatasetSample")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DatasetRow(BaseModel): ...
|
||||
class DatasetSample(BaseModel): ...
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DictSample(DatasetRow):
|
||||
class DictSample(DatasetSample):
|
||||
data: Dict[str, Any]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Generation(BaseModel): ...
|
||||
class ProcessedDictSample(DatasetSample):
|
||||
data: Dict[str, Any]
|
||||
preprocessed: Dict[str, Any]
|
||||
prediction: Dict[str, Any]
|
||||
postprocessed: Dict[str, Any]
|
||||
|
||||
|
||||
# # A sample (row) after preprocessing the raw dataset
|
||||
# TPreprocessedSample = TypeVar("TPreprocessedSample")
|
||||
|
||||
# @json_schema_type
|
||||
# class PreprocessedSample(BaseModel): ...
|
||||
|
||||
# @json_schema_type
|
||||
# class InferencePreprocessedSample(PreprocessedSample):
|
||||
# # TODO: either keep it generic or specific to inference API
|
||||
# # messages: List[Message]
|
||||
# data: Dict[str, Any]
|
||||
|
||||
# # A sample (row) from model prediction output
|
||||
# TPredictionSample = TypeVar("TPredictionSample")
|
||||
|
||||
# @json_schema_type
|
||||
# class PredictionSample(BaseModel): ...
|
||||
|
||||
# @json_schema_type
|
||||
# class InferencePredictionSample(PredictionSample):
|
||||
# data: Dict[str, Any]
|
||||
|
||||
|
||||
# # A sample (row) from post-processed output
|
||||
# TPostprocessedSample = TypeVar("TPostprocessedSample")
|
||||
|
||||
# @json_schema_type
|
||||
# class PostprocessedSample(BaseModel): ...
|
||||
|
||||
# @json_schema_type
|
||||
# class InferencePostprocessedSample(PredictionSample):
|
||||
# data: Dict[str, Any]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
@ -70,16 +109,17 @@ DatasetDef = Annotated[
|
|||
]
|
||||
|
||||
|
||||
class BaseDataset(ABC, Generic[TDatasetRow]):
|
||||
class BaseDataset(ABC, Generic[TDatasetSample]):
|
||||
def __init__(self) -> None:
|
||||
self.type: str = self.__class__.__name__
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def __iter__(self) -> Iterator[TDatasetRow]:
|
||||
def dataset_id(self) -> str:
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def load(self) -> None:
|
||||
def __iter__(self) -> Iterator[TDatasetSample]:
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
|
@ -90,6 +130,10 @@ class BaseDataset(ABC, Generic[TDatasetRow]):
|
|||
def __len__(self) -> int:
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def load(self) -> None:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class Datasets(Protocol):
|
||||
@webmethod(route="/datasets/create")
|
||||
|
|
|
@ -4,10 +4,10 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Protocol
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, Generic, List, Protocol
|
||||
|
||||
from llama_models.schema_utils import webmethod
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
|
@ -22,19 +22,26 @@ class EvaluationJobLogStream(BaseModel):
|
|||
job_uuid: str
|
||||
|
||||
|
||||
class EvaluateTaskConfig(BaseModel):
|
||||
# num examples to evaluate, evaluate all if None
|
||||
n_samples: Optional[int] = None
|
||||
# model evaluation params
|
||||
sampling_params: SamplingParams = SamplingParams()
|
||||
@json_schema_type
|
||||
class EvalResult(BaseModel):
|
||||
"""Evaluation result."""
|
||||
|
||||
metrics: Dict[str, str]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class SingleEvalResult(BaseModel):
|
||||
"""Single evaluation result."""
|
||||
|
||||
score_data: Dict[str, float]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EvaluateResponse(BaseModel):
|
||||
"""Scores for evaluation."""
|
||||
|
||||
preprocess_output: GenerationOutput
|
||||
metrics: Dict[str, str]
|
||||
eval_result: EvalResult
|
||||
formatted_report: Optional[str] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
@ -56,6 +63,75 @@ class EvaluationJobCreateResponse(BaseModel):
|
|||
job_uuid: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EvaluateTaskConfig(BaseModel):
|
||||
# num examples to evaluate, evaluate all if None
|
||||
n_samples: Optional[int] = None
|
||||
# model evaluation params
|
||||
sampling_params: SamplingParams = SamplingParams()
|
||||
|
||||
|
||||
class BaseTask(
|
||||
ABC,
|
||||
Generic[
|
||||
TDatasetSample,
|
||||
TPreprocessedSample,
|
||||
TPredictionSample,
|
||||
TPostprocessedSample,
|
||||
TSingleEvalResult,
|
||||
],
|
||||
):
|
||||
"""
|
||||
A task represents a single evaluation benchmark, including it's dataset, preprocessing, postprocessing and scoring methods.
|
||||
Base class for all evaluation tasks. Each task needs to implement the following methods:
|
||||
- F1: preprocess_sample(self)
|
||||
- F2: postprocess_sample(self)
|
||||
- F3: score_sample(self)
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
self._name = self.__class__.__name__
|
||||
|
||||
@abstractmethod
|
||||
def preprocess_sample(self, sample: TDatasetSample) -> TPreprocessedSample:
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def postprocess_sample(self, sample: TPredictionSample) -> TPostprocessedSample:
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def score_sample(
|
||||
self, sample: TPostprocessedSample, ground_truth: TPreprocessedSample
|
||||
):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def aggregate_results(self, eval_results: List[SingleEvalResult]) -> EvalResult:
|
||||
raise NotImplementedError()
|
||||
|
||||
def preprocess(
|
||||
self, dataset: BaseDataset[TDatasetSample]
|
||||
) -> List[TPreprocessedSample]:
|
||||
return [self.preprocess_sample(sample) for sample in self.dataset]
|
||||
|
||||
def postprocess(
|
||||
self, generation: List[TPredictionSample]
|
||||
) -> List[TPostprocessedSample]:
|
||||
return [self.postprocess_sample(sample) for sample in generation]
|
||||
|
||||
def score(
|
||||
self,
|
||||
postprocessed: List[TPostprocessedSample],
|
||||
preprocessed_dataset: List[TPreprocessedSample],
|
||||
) -> List[TSingleEvalResult]:
|
||||
return [
|
||||
self.score_sample(sample, ground_truth)
|
||||
for sample, ground_truth in zip(postprocessed, self.preprocessed_dataset)
|
||||
]
|
||||
|
||||
|
||||
class Evals(Protocol):
|
||||
@webmethod(route="/evals/run")
|
||||
async def run_evals(
|
||||
|
|
|
@ -5,19 +5,25 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
# TODO: make these import config based
|
||||
# from .dataset import CustomDataset, HFDataset
|
||||
# from .dataset_registry import DatasetRegistry
|
||||
from llama_stack.apis.dataset import * # noqa: F403
|
||||
from .dataset import CustomDataset, HuggingfaceDataset
|
||||
from .dataset_registry import DatasetRegistry
|
||||
|
||||
# DATASETS_REGISTRY = {
|
||||
# "mmlu-simple-eval-en": CustomDataset(
|
||||
# name="mmlu_eval",
|
||||
# url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
|
||||
# ),
|
||||
# "hellaswag": HFDataset(
|
||||
# name="hellaswag",
|
||||
# url="hf://hellaswag?split=validation&trust_remote_code=True",
|
||||
# ),
|
||||
# }
|
||||
DATASETS_REGISTRY = [
|
||||
CustomDataset(
|
||||
config=CustomDatasetDef(
|
||||
identifier="mmlu-simple-eval-en",
|
||||
url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
|
||||
)
|
||||
),
|
||||
HuggingfaceDataset(
|
||||
config=HuggingfaceDatasetDef(
|
||||
identifier="hellaswag",
|
||||
dataset_name="hellaswag",
|
||||
kwargs={"split": "validation", "trust_remote_code": True},
|
||||
)
|
||||
),
|
||||
]
|
||||
|
||||
# for k, v in DATASETS_REGISTRY.items():
|
||||
# DatasetRegistry.register(k, v)
|
||||
for d in DATASETS_REGISTRY:
|
||||
DatasetRegistry.register(d.dataset_id, d)
|
||||
|
|
|
@ -16,17 +16,14 @@ class CustomDataset(BaseDataset[DictSample]):
|
|||
self.dataset = None
|
||||
self.index = 0
|
||||
|
||||
def __iter__(self) -> Iterator[DictSample]:
|
||||
return self
|
||||
@property
|
||||
def dataset_id(self) -> str:
|
||||
return self.config.identifier
|
||||
|
||||
def __next__(self) -> DictSample:
|
||||
def __iter__(self) -> Iterator[DictSample]:
|
||||
if not self.dataset:
|
||||
self.load()
|
||||
if self.index >= len(self.dataset):
|
||||
raise StopIteration
|
||||
sample = DictSample(data=self.dataset[self.index])
|
||||
self.index += 1
|
||||
return sample
|
||||
return (DictSample(data=x) for x in self.dataset)
|
||||
|
||||
def __str__(self):
|
||||
return f"CustomDataset({self.config})"
|
||||
|
@ -53,19 +50,15 @@ class HuggingfaceDataset(BaseDataset[DictSample]):
|
|||
super().__init__()
|
||||
self.config = config
|
||||
self.dataset = None
|
||||
self.index = 0
|
||||
|
||||
@property
|
||||
def dataset_id(self) -> str:
|
||||
return self.config.identifier
|
||||
|
||||
def __iter__(self) -> Iterator[DictSample]:
|
||||
return self
|
||||
|
||||
def __next__(self) -> DictSample:
|
||||
if not self.dataset:
|
||||
self.load()
|
||||
if self.index >= len(self.dataset):
|
||||
raise StopIteration
|
||||
sample = DictSample(data=self.dataset[self.index])
|
||||
self.index += 1
|
||||
return sample
|
||||
return (DictSample(data=x) for x in self.dataset)
|
||||
|
||||
def __str__(self):
|
||||
return f"HuggingfaceDataset({self.config})"
|
||||
|
@ -79,12 +72,3 @@ class HuggingfaceDataset(BaseDataset[DictSample]):
|
|||
if self.dataset:
|
||||
return
|
||||
self.dataset = load_dataset(self.config.dataset_name, **self.config.kwargs)
|
||||
# parsed = urlparse(self.url)
|
||||
|
||||
# if parsed.scheme != "hf":
|
||||
# raise ValueError(f"Unknown HF dataset: {self.url}")
|
||||
|
||||
# query = parse_qs(parsed.query)
|
||||
# query = {k: v[0] for k, v in query.items()}
|
||||
# path = parsed.netloc
|
||||
# self.dataset = load_dataset(path, **query)
|
||||
|
|
|
@ -111,7 +111,14 @@ def normalize_extracted_answer(extracted_answer: str) -> str:
|
|||
)
|
||||
|
||||
|
||||
class MMLUTask(BaseTask):
|
||||
class MMLUTask(
|
||||
BaseTask[
|
||||
DictSample,
|
||||
InferencePreprocessedSample,
|
||||
InferencePredictionSample,
|
||||
InferencePostprocessedSample,
|
||||
]
|
||||
):
|
||||
"""
|
||||
MMLU Task.
|
||||
"""
|
||||
|
@ -120,6 +127,7 @@ class MMLUTask(BaseTask):
|
|||
super().__init__(dataset, *args, **kwargs)
|
||||
|
||||
def preprocess_sample(self, sample):
|
||||
print(sample)
|
||||
content = QUERY_TEMPLATE_MULTICHOICE.format(**sample)
|
||||
return {
|
||||
"role": "user",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue