Removing example section

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
Francisco Javier Arceo 2025-03-13 20:19:32 -04:00
parent 7eb7c94888
commit 9ba2e17032
3 changed files with 0 additions and 162 deletions

View file

@ -1,33 +0,0 @@
ROOT_DIR := $(shell dirname $(realpath $(firstword $(MAKEFILE_LIST))))
OS := linux
ifeq ($(shell uname -s), Darwin)
OS = osx
endif
PYTHON_VERSION = ${shell python --version | grep -Eo '[0-9]\.[0-9]+'}
PYTHON_VERSIONS := 3.10 3.11
build-dev:
uv sync --extra dev --extra test
uv pip install -e .
. .venv/bin/activate
uv pip install sqlite-vec chardet datasets sentence_transformers pypdf
build-ollama: fix-line-endings
llama stack build --template ollama --image-type venv
fix-line-endings:
sed -i '' 's/\r$$//' llama_stack/distribution/common.sh
sed -i '' 's/\r$$//' llama_stack/distribution/build_venv.sh
test-sqlite-vec:
pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py \
-v -s --tb=short --disable-warnings --asyncio-mode=auto
test-ollama-vector-integration:
INFERENCE_MODEL=llama3.2:3b-instruct-fp16 LLAMA_STACK_CONFIG=ollama \
pytest -s -v tests/client-sdk/vector_io/test_vector_io.py
make serve-ollama:
ollama run llama3.2:3b-instruct-fp16 --keepalive 24h

View file

@ -42,23 +42,6 @@ And other important items outlined more in depth in the [GitHub documentation](h
## Nomination Process for Triage-role
The process for nomination for the triage role should be simple and at the discretion of the maintainers.
## Example
We tested this functionality using the @feast-dev repository and have provided screenshots outlining how to make this change.
Step 1:
![Figure 1: Select Repository Settings](./_static/triage-role-config-1.png)
Step 2:
![Figure 2: Invite Outside Collaborator](./_static/triage-role-config-2.png)
Step 3:
![Figure 3: Select Triage Role](./_static/triage-role-config-3.png)
Step 4:
![Figure 4: User Receives Triage Role](./_static/triage-role-config-4.png)
## Thank you
Thank you in advance for your feedback and support and we look forward to collaborating on this great project!

View file

@ -1,112 +0,0 @@
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import uuid
from termcolor import cprint
# Set environment variables
os.environ["INFERENCE_MODEL"] = "llama3.2:3b-instruct-fp16"
os.environ["LLAMA_STACK_CONFIG"] = "ollama"
# Import libraries after setting environment variables
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types import Document
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
def main():
# Initialize the client
client = LlamaStackAsLibraryClient("ollama")
vector_db_id = f"test-vector-db-{uuid.uuid4().hex}"
_ = client.initialize()
model_id = "llama3.2:3b-instruct-fp16"
# Define the list of document URLs and create Document objects
urls = [
"chat.rst",
"llama3.rst",
"memory_optimizations.rst",
"lora_finetune.rst",
]
documents = [
Document(
document_id=f"num-{i}",
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
mime_type="text/plain",
metadata={},
)
for i, url in enumerate(urls)
]
# (Optional) Use the documents as needed with your client here
client.vector_dbs.register(
provider_id="sqlite_vec",
vector_db_id=vector_db_id,
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
)
client.tool_runtime.rag_tool.insert(
documents=documents,
vector_db_id=vector_db_id,
chunk_size_in_tokens=512,
)
# Create agent configuration
agent_config = AgentConfig(
model=model_id,
instructions="You are a helpful assistant",
enable_session_persistence=False,
toolgroups=[
{
"name": "builtin::rag",
"args": {
"vector_db_ids": [vector_db_id],
},
}
],
)
# Instantiate the Agent
agent = Agent(client, agent_config)
# List of user prompts
user_prompts = [
"What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.",
"Was anything related to 'Llama3' discussed, if so what?",
"Tell me how to use LoRA",
"What about Quantization?",
]
# Create a session for the agent
session_id = agent.create_session("test-session")
# Process each prompt and display the output
for prompt in user_prompts:
cprint(f"User> {prompt}", "green")
response = agent.create_turn(
messages=[
{
"role": "user",
"content": prompt,
}
],
session_id=session_id,
)
# Log and print events from the response
for log in EventLogger().log(response):
log.print()
if __name__ == "__main__":
main()