Update Fireworks + Togther documentation

This commit is contained in:
Ashwin Bharambe 2024-11-18 12:52:23 -08:00
parent 1ecaf2cb3c
commit a562668dcd
27 changed files with 879 additions and 445 deletions

View file

@ -6,103 +6,106 @@ The `llamastack/distribution-{{ name }}` distribution consists of the following
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.
{%- if docker_compose_env_vars %}
{%- if run_config_env_vars %}
### Environment Variables
The following environment variables can be configured:
{% for var, (default_value, description) in docker_compose_env_vars.items() %}
{% for var, (default_value, description) in run_config_env_vars.items() %}
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
{% endfor %}
{% endif %}
{%- if default_models %}
### Models
The following models are configured by default:
{% for model in default_models %}
- `{{ model.model_id }}`
{% endfor %}
{% endif %}
## Setting up Ollama server
## Using Docker Compose
Please check the [Ollama Documentation](https://github.com/ollama/ollama) on how to install and run Ollama. After installing Ollama, you need to run `ollama serve` to start the server.
You can use `docker compose` to start a Ollama server and connect with Llama Stack server in a single command.
In order to load models, you can run:
```bash
$ cd distributions/{{ name }}; docker compose up
export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
# ollama names this model differently, and we must use the ollama name when loading the model
export OLLAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16"
ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m
```
You will see outputs similar to following ---
If you are using Llama Stack Safety / Shield APIs, you will also need to pull and run the safety model.
```bash
[ollama] | [GIN] 2024/10/18 - 21:19:41 | 200 | 226.841µs | ::1 | GET "/api/ps"
[ollama] | [GIN] 2024/10/18 - 21:19:42 | 200 | 60.908µs | ::1 | GET "/api/ps"
INFO: Started server process [1]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
[llamastack] | Resolved 12 providers
[llamastack] | inner-inference => ollama0
[llamastack] | models => __routing_table__
[llamastack] | inference => __autorouted__
export SAFETY_MODEL="meta-llama/Llama-Guard-3-1B"
# ollama names this model differently, and we must use the ollama name when loading the model
export OLLAMA_SAFETY_MODEL="llama-guard3:1b"
ollama run $OLLAMA_SAFETY_MODEL --keepalive 60m
```
To kill the server
## Running Llama Stack
Now you are ready to run Llama Stack with Ollama as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
docker compose down
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-v ./run.yaml:/root/my-run.yaml \
--gpus=all \
llamastack/distribution-{{ name }} \
/root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://host.docker.internal:11434
```
## Starting Ollama and Llama Stack separately
If you are using Llama Stack Safety / Shield APIs, use:
If you wish to separately spin up a Ollama server, and connect with Llama Stack, you should use the following commands.
#### Start Ollama server
- Please check the [Ollama Documentation](https://github.com/ollama/ollama) for more details.
**Via Docker**
```bash
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-v ./run-with-safety.yaml:/root/my-run.yaml \
--gpus=all \
llamastack/distribution-{{ name }} \
/root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env OLLAMA_URL=http://host.docker.internal:11434
```
**Via CLI**
```bash
ollama run <model_id>
```
### Via Conda
#### Start Llama Stack server pointing to Ollama server
**Via Conda**
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
```bash
llama stack build --template ollama --image-type conda
llama stack run run.yaml
llama stack run ./run.yaml \
--port 5001 \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://127.0.0.1:11434
```
**Via Docker**
```
docker run --network host -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./gpu/run.yaml:/root/llamastack-run-ollama.yaml --gpus=all llamastack/distribution-ollama --yaml_config /root/llamastack-run-ollama.yaml
```
Make sure in your `run.yaml` file, your inference provider is pointing to the correct Ollama endpoint. E.g.
```yaml
inference:
- provider_id: ollama0
provider_type: remote::ollama
config:
url: http://127.0.0.1:14343
```
### (Optional) Update Model Serving Configuration
#### Downloading model via Ollama
You can use ollama for managing model downloads.
If you are using Llama Stack Safety / Shield APIs, use:
```bash
ollama pull llama3.1:8b-instruct-fp16
ollama pull llama3.1:70b-instruct-fp16
llama stack run ./run-with-safety.yaml \
--port 5001 \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env OLLAMA_URL=http://127.0.0.1:11434
```
### (Optional) Update Model Serving Configuration
> [!NOTE]
> Please check the [OLLAMA_SUPPORTED_MODELS](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers.remote/inference/ollama/ollama.py) for the supported Ollama models.