mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-08 04:54:38 +00:00
Add vector_db_id to chunk metadata
Adding unit tests
This commit is contained in:
parent
eed25fc6e4
commit
b50cb25b57
2 changed files with 81 additions and 5 deletions
|
@ -54,9 +54,7 @@ class TestRagQuery:
|
|||
result = await rag_tool.query(content=content, vector_db_ids=vector_db_ids)
|
||||
|
||||
assert result is not None
|
||||
expected_metadata_string = (
|
||||
"Metadata: {'chunk_id': 'chunk1', 'document_id': 'doc1', 'source': 'test_source', 'key1': 'value1'}"
|
||||
)
|
||||
expected_metadata_string = "Metadata: {'chunk_id': 'chunk1', 'document_id': 'doc1', 'source': 'test_source', 'key1': 'value1', 'vector_db_id': 'db1'}"
|
||||
assert expected_metadata_string in result.content[1].text
|
||||
assert result.content is not None
|
||||
|
||||
|
@ -77,3 +75,71 @@ class TestRagQuery:
|
|||
# Test that invalid mode raises an error
|
||||
with pytest.raises(ValueError):
|
||||
RAGQueryConfig(mode="wrong_mode")
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_adds_vector_db_id_to_chunk_metadata(self):
|
||||
rag_tool = MemoryToolRuntimeImpl(
|
||||
config=MagicMock(),
|
||||
vector_io_api=MagicMock(),
|
||||
inference_api=MagicMock(),
|
||||
)
|
||||
|
||||
vector_db_ids = ["db1", "db2"]
|
||||
|
||||
# Fake chunks from each DB
|
||||
chunk_metadata1 = ChunkMetadata(
|
||||
document_id="doc1",
|
||||
chunk_id="chunk1",
|
||||
source="test_source1",
|
||||
metadata_token_count=5,
|
||||
)
|
||||
chunk1 = Chunk(
|
||||
content="chunk from db1",
|
||||
metadata={"vector_db_id": "db1", "document_id": "doc1"},
|
||||
stored_chunk_id="c1",
|
||||
chunk_metadata=chunk_metadata1,
|
||||
)
|
||||
|
||||
chunk_metadata2 = ChunkMetadata(
|
||||
document_id="doc2",
|
||||
chunk_id="chunk2",
|
||||
source="test_source2",
|
||||
metadata_token_count=5,
|
||||
)
|
||||
chunk2 = Chunk(
|
||||
content="chunk from db2",
|
||||
metadata={"vector_db_id": "db2", "document_id": "doc2"},
|
||||
stored_chunk_id="c2",
|
||||
chunk_metadata=chunk_metadata2,
|
||||
)
|
||||
|
||||
rag_tool.vector_io_api.query_chunks = AsyncMock(
|
||||
side_effect=[
|
||||
QueryChunksResponse(chunks=[chunk1], scores=[0.9]),
|
||||
QueryChunksResponse(chunks=[chunk2], scores=[0.8]),
|
||||
]
|
||||
)
|
||||
|
||||
result = await rag_tool.query(content="test", vector_db_ids=vector_db_ids)
|
||||
returned_chunks = result.metadata["chunks"]
|
||||
returned_scores = result.metadata["scores"]
|
||||
returned_doc_ids = result.metadata["document_ids"]
|
||||
|
||||
assert returned_chunks == ["chunk from db1", "chunk from db2"]
|
||||
assert returned_scores == (0.9, 0.8)
|
||||
assert returned_doc_ids == ["doc1", "doc2"]
|
||||
|
||||
# Parse metadata from query result
|
||||
def parse_metadata(s):
|
||||
import ast
|
||||
import re
|
||||
|
||||
match = re.search(r"Metadata:\s*(\{.*\})", s)
|
||||
if not match:
|
||||
raise ValueError(f"No metadata found in string: {s}")
|
||||
return ast.literal_eval(match.group(1))
|
||||
|
||||
returned_metadata = [
|
||||
parse_metadata(item.text)["vector_db_id"] for item in result.content if "Metadata:" in item.text
|
||||
]
|
||||
assert returned_metadata == ["db1", "db2"]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue