mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-07 06:20:45 +00:00
feat: consolidate most distros into "starter" (#2516)
# What does this PR do? * Removes a bunch of distros * Removed distros were added into the "starter" distribution * Doc for "starter" has been added * Partially reverts https://github.com/meta-llama/llama-stack/pull/2482 since inference providers are disabled by default and can be turned on manually via env variable. * Disables safety in starter distro Closes: https://github.com/meta-llama/llama-stack/issues/2502. ~Needs: https://github.com/meta-llama/llama-stack/pull/2482 for Ollama to work properly in the CI.~ TODO: - [ ] We can only update `install.sh` when we get a new release. - [x] Update providers documentation - [ ] Update notebooks to reference starter instead of ollama Signed-off-by: Sébastien Han <seb@redhat.com>
This commit is contained in:
parent
f77d4d91f5
commit
c4349f532b
132 changed files with 1009 additions and 10845 deletions
|
@ -5,17 +5,21 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.distribution.datatypes import (
|
||||
ModelInput,
|
||||
Provider,
|
||||
ShieldInput,
|
||||
ProviderSpec,
|
||||
ToolGroupInput,
|
||||
)
|
||||
from llama_stack.distribution.utils.dynamic import instantiate_class_type
|
||||
from llama_stack.providers.inline.files.localfs.config import LocalfsFilesImplConfig
|
||||
from llama_stack.providers.inline.inference.sentence_transformers import (
|
||||
SentenceTransformersInferenceConfig,
|
||||
)
|
||||
from llama_stack.providers.inline.post_training.huggingface import HuggingFacePostTrainingConfig
|
||||
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||
from llama_stack.providers.inline.vector_io.milvus.config import (
|
||||
MilvusVectorIOConfig,
|
||||
|
@ -23,36 +27,28 @@ from llama_stack.providers.inline.vector_io.milvus.config import (
|
|||
from llama_stack.providers.inline.vector_io.sqlite_vec.config import (
|
||||
SQLiteVectorIOConfig,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.anthropic.config import AnthropicConfig
|
||||
from llama_stack.providers.registry.inference import available_providers
|
||||
from llama_stack.providers.remote.inference.anthropic.models import (
|
||||
MODEL_ENTRIES as ANTHROPIC_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.fireworks.config import FireworksImplConfig
|
||||
from llama_stack.providers.remote.inference.fireworks.models import (
|
||||
MODEL_ENTRIES as FIREWORKS_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.gemini.config import GeminiConfig
|
||||
from llama_stack.providers.remote.inference.gemini.models import (
|
||||
MODEL_ENTRIES as GEMINI_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.groq.config import GroqConfig
|
||||
from llama_stack.providers.remote.inference.groq.models import (
|
||||
MODEL_ENTRIES as GROQ_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.ollama.config import OllamaImplConfig
|
||||
from llama_stack.providers.remote.inference.openai.config import OpenAIConfig
|
||||
from llama_stack.providers.remote.inference.openai.models import (
|
||||
MODEL_ENTRIES as OPENAI_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.sambanova.config import SambaNovaImplConfig
|
||||
from llama_stack.providers.remote.inference.sambanova.models import (
|
||||
MODEL_ENTRIES as SAMBANOVA_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.together.config import TogetherImplConfig
|
||||
from llama_stack.providers.remote.inference.together.models import (
|
||||
MODEL_ENTRIES as TOGETHER_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig
|
||||
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
|
||||
from llama_stack.providers.remote.vector_io.pgvector.config import (
|
||||
PGVectorVectorIOConfig,
|
||||
|
@ -66,83 +62,92 @@ from llama_stack.templates.template import (
|
|||
)
|
||||
|
||||
|
||||
def get_inference_providers() -> tuple[list[Provider], dict[str, list[ProviderModelEntry]]]:
|
||||
# in this template, we allow each API key to be optional
|
||||
providers = [
|
||||
(
|
||||
"openai",
|
||||
OPENAI_MODEL_ENTRIES,
|
||||
OpenAIConfig.sample_run_config(api_key="${env.OPENAI_API_KEY:=}"),
|
||||
),
|
||||
(
|
||||
"fireworks",
|
||||
FIREWORKS_MODEL_ENTRIES,
|
||||
FireworksImplConfig.sample_run_config(api_key="${env.FIREWORKS_API_KEY:=}"),
|
||||
),
|
||||
(
|
||||
"together",
|
||||
TOGETHER_MODEL_ENTRIES,
|
||||
TogetherImplConfig.sample_run_config(api_key="${env.TOGETHER_API_KEY:=}"),
|
||||
),
|
||||
(
|
||||
"ollama",
|
||||
[
|
||||
ProviderModelEntry(
|
||||
provider_model_id="${env.OLLAMA_INFERENCE_MODEL:=__disabled__}",
|
||||
model_type=ModelType.llm,
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="${env.OLLAMA_EMBEDDING_MODEL:=__disabled__}",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimension": "${env.OLLAMA_EMBEDDING_DIMENSION:=384}",
|
||||
},
|
||||
),
|
||||
],
|
||||
OllamaImplConfig.sample_run_config(
|
||||
url="${env.OLLAMA_URL:=http://localhost:11434}", raise_on_connect_error=False
|
||||
def _get_model_entries_for_provider(provider_type: str) -> list[ProviderModelEntry]:
|
||||
"""Get model entries for a specific provider type."""
|
||||
model_entries_map = {
|
||||
"openai": OPENAI_MODEL_ENTRIES,
|
||||
"fireworks": FIREWORKS_MODEL_ENTRIES,
|
||||
"together": TOGETHER_MODEL_ENTRIES,
|
||||
"anthropic": ANTHROPIC_MODEL_ENTRIES,
|
||||
"gemini": GEMINI_MODEL_ENTRIES,
|
||||
"groq": GROQ_MODEL_ENTRIES,
|
||||
"sambanova": SAMBANOVA_MODEL_ENTRIES,
|
||||
}
|
||||
|
||||
# Special handling for providers with dynamic model entries
|
||||
if provider_type == "ollama":
|
||||
return [
|
||||
ProviderModelEntry(
|
||||
provider_model_id="${env.OLLAMA_INFERENCE_MODEL:=__disabled__}",
|
||||
model_type=ModelType.llm,
|
||||
),
|
||||
),
|
||||
(
|
||||
"anthropic",
|
||||
ANTHROPIC_MODEL_ENTRIES,
|
||||
AnthropicConfig.sample_run_config(api_key="${env.ANTHROPIC_API_KEY:=}"),
|
||||
),
|
||||
(
|
||||
"gemini",
|
||||
GEMINI_MODEL_ENTRIES,
|
||||
GeminiConfig.sample_run_config(api_key="${env.GEMINI_API_KEY:=}"),
|
||||
),
|
||||
(
|
||||
"groq",
|
||||
GROQ_MODEL_ENTRIES,
|
||||
GroqConfig.sample_run_config(api_key="${env.GROQ_API_KEY:=}"),
|
||||
),
|
||||
(
|
||||
"sambanova",
|
||||
SAMBANOVA_MODEL_ENTRIES,
|
||||
SambaNovaImplConfig.sample_run_config(api_key="${env.SAMBANOVA_API_KEY:=}"),
|
||||
),
|
||||
(
|
||||
"vllm",
|
||||
[
|
||||
ProviderModelEntry(
|
||||
provider_model_id="${env.VLLM_INFERENCE_MODEL:=__disabled__}",
|
||||
model_type=ModelType.llm,
|
||||
),
|
||||
],
|
||||
VLLMInferenceAdapterConfig.sample_run_config(
|
||||
url="${env.VLLM_URL:=http://localhost:8000/v1}",
|
||||
ProviderModelEntry(
|
||||
provider_model_id="${env.OLLAMA_EMBEDDING_MODEL:=__disabled__}",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimension": "${env.OLLAMA_EMBEDDING_DIMENSION:=384}",
|
||||
},
|
||||
),
|
||||
),
|
||||
]
|
||||
elif provider_type == "vllm":
|
||||
return [
|
||||
ProviderModelEntry(
|
||||
provider_model_id="${env.VLLM_INFERENCE_MODEL:=__disabled__}",
|
||||
model_type=ModelType.llm,
|
||||
),
|
||||
]
|
||||
|
||||
return model_entries_map.get(provider_type, [])
|
||||
|
||||
|
||||
def _get_config_for_provider(provider_spec: ProviderSpec) -> dict[str, Any]:
|
||||
"""Get configuration for a provider using its adapter's config class."""
|
||||
config_class = instantiate_class_type(provider_spec.config_class)
|
||||
|
||||
if hasattr(config_class, "sample_run_config"):
|
||||
config: dict[str, Any] = config_class.sample_run_config()
|
||||
return config
|
||||
return {}
|
||||
|
||||
|
||||
def get_remote_inference_providers() -> tuple[list[Provider], dict[str, list[ProviderModelEntry]]]:
|
||||
all_providers = available_providers()
|
||||
|
||||
# Filter out inline providers and watsonx - the starter distro only exposes remote providers
|
||||
remote_providers = [
|
||||
provider
|
||||
for provider in all_providers
|
||||
# TODO: re-add once the Python 3.13 issue is fixed
|
||||
# discussion: https://github.com/meta-llama/llama-stack/pull/2327#discussion_r2156883828
|
||||
if hasattr(provider, "adapter") and provider.adapter.adapter_type != "watsonx"
|
||||
]
|
||||
inference_providers = []
|
||||
|
||||
providers = []
|
||||
available_models = {}
|
||||
for provider_id, model_entries, config in providers:
|
||||
|
||||
for provider_spec in remote_providers:
|
||||
provider_type = provider_spec.adapter.adapter_type
|
||||
|
||||
# Build the environment variable name for enabling this provider
|
||||
env_var = f"ENABLE_{provider_type.upper().replace('-', '_').replace('::', '_')}"
|
||||
model_entries = _get_model_entries_for_provider(provider_type)
|
||||
config = _get_config_for_provider(provider_spec)
|
||||
providers.append(
|
||||
(
|
||||
f"${{env.{env_var}:=__disabled__}}",
|
||||
provider_type,
|
||||
model_entries,
|
||||
config,
|
||||
)
|
||||
)
|
||||
available_models[f"${{env.{env_var}:=__disabled__}}"] = model_entries
|
||||
|
||||
inference_providers = []
|
||||
for provider_id, provider_type, model_entries, config in providers:
|
||||
inference_providers.append(
|
||||
Provider(
|
||||
provider_id=provider_id,
|
||||
provider_type=f"remote::{provider_id}",
|
||||
provider_type=f"remote::{provider_type}",
|
||||
config=config,
|
||||
)
|
||||
)
|
||||
|
@ -151,14 +156,15 @@ def get_inference_providers() -> tuple[list[Provider], dict[str, list[ProviderMo
|
|||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
inference_providers, available_models = get_inference_providers()
|
||||
remote_inference_providers, available_models = get_remote_inference_providers()
|
||||
providers = {
|
||||
"inference": ([p.provider_type for p in inference_providers] + ["inline::sentence-transformers"]),
|
||||
"inference": ([p.provider_type for p in remote_inference_providers] + ["inline::sentence-transformers"]),
|
||||
"vector_io": ["inline::sqlite-vec", "inline::milvus", "remote::chromadb", "remote::pgvector"],
|
||||
"files": ["inline::localfs"],
|
||||
"safety": ["inline::llama-guard"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
"post_training": ["inline::huggingface"],
|
||||
"eval": ["inline::meta-reference"],
|
||||
"datasetio": ["remote::huggingface", "inline::localfs"],
|
||||
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
||||
|
@ -173,27 +179,27 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
|
||||
vector_io_providers = [
|
||||
Provider(
|
||||
provider_id="faiss",
|
||||
provider_id="${env.ENABLE_FAISS:=faiss}",
|
||||
provider_type="inline::faiss",
|
||||
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||
),
|
||||
Provider(
|
||||
provider_id="${env.ENABLE_SQLITE_VEC:+sqlite-vec}",
|
||||
provider_id="${env.ENABLE_SQLITE_VEC:=__disabled__}",
|
||||
provider_type="inline::sqlite-vec",
|
||||
config=SQLiteVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||
),
|
||||
Provider(
|
||||
provider_id="${env.ENABLE_MILVUS:+milvus}",
|
||||
provider_id="${env.ENABLE_MILVUS:=__disabled__}",
|
||||
provider_type="inline::milvus",
|
||||
config=MilvusVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||
),
|
||||
Provider(
|
||||
provider_id="${env.ENABLE_CHROMADB:+chromadb}",
|
||||
provider_id="${env.ENABLE_CHROMADB:=__disabled__}",
|
||||
provider_type="remote::chromadb",
|
||||
config=ChromaVectorIOConfig.sample_run_config(url="${env.CHROMADB_URL:=}"),
|
||||
),
|
||||
Provider(
|
||||
provider_id="${env.ENABLE_PGVECTOR:+pgvector}",
|
||||
provider_id="${env.ENABLE_PGVECTOR:=__disabled__}",
|
||||
provider_type="remote::pgvector",
|
||||
config=PGVectorVectorIOConfig.sample_run_config(
|
||||
db="${env.PGVECTOR_DB:=}",
|
||||
|
@ -208,11 +214,15 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
config=LocalfsFilesImplConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||
)
|
||||
embedding_provider = Provider(
|
||||
provider_id="sentence-transformers",
|
||||
provider_id="${env.ENABLE_SENTENCE_TRANSFORMERS:=sentence-transformers}",
|
||||
provider_type="inline::sentence-transformers",
|
||||
config=SentenceTransformersInferenceConfig.sample_run_config(),
|
||||
)
|
||||
|
||||
post_training_provider = Provider(
|
||||
provider_id="huggingface",
|
||||
provider_type="inline::huggingface",
|
||||
config=HuggingFacePostTrainingConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||
)
|
||||
default_tool_groups = [
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::websearch",
|
||||
|
@ -246,13 +256,17 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
run_configs={
|
||||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": inference_providers + [embedding_provider],
|
||||
"inference": remote_inference_providers + [embedding_provider],
|
||||
"vector_io": vector_io_providers,
|
||||
"files": [files_provider],
|
||||
"post_training": [post_training_provider],
|
||||
},
|
||||
default_models=default_models + [embedding_model],
|
||||
default_tool_groups=default_tool_groups,
|
||||
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
|
||||
# TODO: add a way to enable/disable shields on the fly
|
||||
# default_shields=[
|
||||
# ShieldInput(provider_id="llama-guard", shield_id="${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-8B}")
|
||||
# ],
|
||||
),
|
||||
},
|
||||
run_config_env_vars={
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue