Add special case for prompt guard

This commit is contained in:
Ashwin Bharambe 2024-10-02 08:38:23 -07:00
parent a80b707ff8
commit cc5029a716
4 changed files with 76 additions and 13 deletions

View file

@ -39,7 +39,14 @@ class ModelDescribe(Subcommand):
)
def _run_model_describe_cmd(self, args: argparse.Namespace) -> None:
model = resolve_model(args.model_id)
from .safety_models import prompt_guard_model_sku
prompt_guard = prompt_guard_model_sku()
if args.model_id == prompt_guard.model_id:
model = prompt_guard
else:
model = resolve_model(args.model_id)
if model is None:
self.parser.error(
f"Model {args.model_id} not found; try 'llama model list' for a list of available models."

View file

@ -34,6 +34,8 @@ class ModelList(Subcommand):
)
def _run_model_list_cmd(self, args: argparse.Namespace) -> None:
from .safety_models import prompt_guard_model_sku
headers = [
"Model Descriptor",
"Hugging Face Repo",
@ -41,7 +43,7 @@ class ModelList(Subcommand):
]
rows = []
for model in all_registered_models():
for model in all_registered_models() + [prompt_guard_model_sku()]:
if not args.show_all and not model.is_featured:
continue

View file

@ -0,0 +1,52 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, Optional
from pydantic import BaseModel, ConfigDict, Field
from llama_models.datatypes import * # noqa: F403
from llama_models.sku_list import LlamaDownloadInfo
class PromptGuardModel(BaseModel):
"""Make a 'fake' Model-like object for Prompt Guard. Eventually this will be removed."""
model_id: str = "Prompt-Guard-86M"
description: str = (
"Prompt Guard. NOTE: this model will not be provided via `llama` CLI soon."
)
is_featured: bool = False
huggingface_repo: str = "meta-llama/Prompt-Guard-86M"
max_seq_length: int = 2048
is_instruct_model: bool = False
quantization_format: CheckpointQuantizationFormat = (
CheckpointQuantizationFormat.bf16
)
arch_args: Dict[str, Any] = Field(default_factory=dict)
recommended_sampling_params: Optional[SamplingParams] = None
def descriptor(self) -> str:
return self.model_id
model_config = ConfigDict(protected_namespaces=())
def prompt_guard_model_sku():
return PromptGuardModel()
def prompt_guard_download_info():
return LlamaDownloadInfo(
folder="Prompt-Guard",
files=[
"model.safetensors",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
],
pth_size=1,
)