move eval_task_config to client

This commit is contained in:
Xi Yan 2024-10-15 10:14:35 -07:00
parent d2b62157a3
commit cccd5be090
3 changed files with 74 additions and 114 deletions

View file

@ -46,23 +46,13 @@ class EvaluationClient(Evals):
async def run_evals(
self,
model: str,
task: str,
dataset: Optional[str] = None,
eval_task_config: Optional[EvaluateTaskConfig] = None,
eval_task_config: EvaluateTaskConfig,
) -> EvaluateResponse:
async with httpx.AsyncClient() as client:
response = await client.post(
f"{self.base_url}/evals/run_eval_task",
json={
"model": model,
"task": task,
"dataset": dataset,
"eval_task_config": (
json.loads(eval_task_config.json())
if eval_task_config
else None
),
"eval_task_config": json.loads(eval_task_config.json()),
},
headers={"Content-Type": "application/json"},
timeout=3600,
@ -94,85 +84,88 @@ async def run_main(host: str, port: int, eval_dataset_path: str = ""):
dataset_client = DatasetsClient(f"http://{host}:{port}")
# Full Eval Task
# # 1. register custom dataset
# response = await dataset_client.create_dataset(
# dataset_def=CustomDatasetDef(
# identifier="mmlu-simple-eval-en",
# url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
# ),
# )
# cprint(f"datasets/create: {response}", "cyan")
# # 2. run evals on the registered dataset
# response = await client.run_evals(
# model="Llama3.1-8B-Instruct",
# dataset="mmlu-simple-eval-en",
# task="mmlu",
# )
# if response.formatted_report:
# cprint(response.formatted_report, "green")
# else:
# cprint(f"Response: {response}", "green")
# Scoring Task
# 1. register huggingface dataset
response = await dataset_client.create_dataset(
dataset_def=HuggingfaceDatasetDef(
identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
dataset_path="meta-llama/Llama-3.1-8B-Instruct-evals",
dataset_name="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
rename_columns_map={
"output_parsed_answer": "generated_answer",
"input_correct_responses": "expected_answer",
},
kwargs={"split": "latest"},
)
)
cprint(response, "cyan")
# 1. register custom dataset
response = await dataset_client.create_dataset(
dataset_def=CustomDatasetDef(
identifier="rag-evals",
url=data_url_from_file(eval_dataset_path),
rename_columns_map={
"query": "input_query",
},
)
)
cprint(response, "cyan")
# 2. run evals on the registered dataset
response = await client.run_scorer(
dataset_config=EvaluateDatasetConfig(
dataset_identifier="rag-evals",
# dataset_identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
row_limit=10,
identifier="mmlu-simple-eval-en",
url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
),
eval_scoring_config=EvaluateScoringConfig(
)
cprint(f"datasets/create: {response}", "cyan")
# # 2. run evals on the registered dataset
eval_task_config = EvaluateTaskConfig(
dataset_config=EvaluateDatasetConfig(
dataset_identifier="mmlu-simple-eval-en",
row_limit=3,
),
processor_config=EvaluateProcessorConfig(
processor_identifier="mmlu",
),
generation_config=EvaluateModelGenerationConfig(
model="Llama3.1-8B-Instruct",
),
scoring_config=EvaluateScoringConfig(
scorer_config_list=[
EvaluateSingleScorerConfig(scorer_name="accuracy"),
EvaluateSingleScorerConfig(
scorer_name="braintrust::answer-correctness"
),
EvaluateSingleScorerConfig(scorer_name="random"),
]
),
)
response = await client.run_evals(
eval_task_config=eval_task_config,
)
for k, v in response.eval_result.metrics.items():
cprint(f"{k}: {v}", "green")
# Eleuther Eval Task
# response = await client.run_evals(
# model="Llama3.1-8B-Instruct",
# # task="meta_mmlu_pro_instruct",
# task="meta_ifeval",
# eval_task_config=EvaluateTaskConfig(
# n_samples=2,
# Scoring Task
# # 1. register huggingface dataset
# response = await dataset_client.create_dataset(
# dataset_def=HuggingfaceDatasetDef(
# identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
# dataset_path="meta-llama/Llama-3.1-8B-Instruct-evals",
# dataset_name="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
# rename_columns_map={
# "output_parsed_answer": "generated_answer",
# "input_correct_responses": "expected_answer",
# },
# kwargs={"split": "latest"},
# )
# )
# cprint(response, "cyan")
# # register custom dataset from file path
# response = await dataset_client.create_dataset(
# dataset_def=CustomDatasetDef(
# identifier="rag-evals",
# url=data_url_from_file(eval_dataset_path),
# rename_columns_map={
# "query": "input_query",
# },
# )
# )
# cprint(response, "cyan")
# # 2. run evals on the registered dataset
# response = await client.run_scorer(
# dataset_config=EvaluateDatasetConfig(
# dataset_identifier="rag-evals",
# # dataset_identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
# row_limit=10,
# ),
# eval_scoring_config=EvaluateScoringConfig(
# scorer_config_list=[
# EvaluateSingleScorerConfig(scorer_name="accuracy"),
# EvaluateSingleScorerConfig(
# scorer_name="braintrust::answer-correctness"
# ),
# ]
# ),
# )
# for k, v in response.eval_result.metrics.items():
# cprint(f"{k}: {v}", "green")
def main(host: str, port: int, eval_dataset_path: str = ""):
asyncio.run(run_main(host, port, eval_dataset_path))

View file

@ -228,10 +228,7 @@ class Evals(Protocol):
@webmethod(route="/evals/run_eval_task")
async def run_eval_task(
self,
model: str,
task: str,
dataset: Optional[str] = None,
eval_task_config: Optional[EvaluateTaskConfig] = None,
eval_task_config: EvaluateTaskConfig,
) -> EvaluateResponse: ...
@webmethod(route="/evals/run_scorer")

View file

@ -28,39 +28,9 @@ class MetaReferenceEvalsImpl(Evals):
async def run_eval_task(
self,
model: str,
task: str,
dataset: Optional[str] = None,
eval_task_config: Optional[EvaluateTaskConfig] = None,
eval_task_config: EvaluateTaskConfig,
) -> EvaluateResponse:
cprint(
f"model={model}, dataset={dataset}, task={task}, eval_task_config={eval_task_config}",
"red",
)
if not dataset:
raise ValueError("dataset must be specified for mete-reference evals")
if not eval_task_config:
# construct eval task config from inputs
eval_task_config = EvaluateTaskConfig(
dataset_config=EvaluateDatasetConfig(
dataset_identifier=dataset,
row_limit=3,
),
processor_config=EvaluateProcessorConfig(
processor_identifier="mmlu",
),
generation_config=EvaluateModelGenerationConfig(
model=model,
),
scoring_config=EvaluateScoringConfig(
scorer_config_list=[
EvaluateSingleScorerConfig(scorer_name="accuracy"),
EvaluateSingleScorerConfig(scorer_name="random"),
]
),
)
cprint(f"run_eval_task: on {eval_task_config}", "green")
run_task = RunEvalTask()
eval_result = await run_task.run(eval_task_config, self.inference_api)
@ -75,7 +45,7 @@ class MetaReferenceEvalsImpl(Evals):
dataset_config: EvaluateDatasetConfig,
eval_scoring_config: EvaluateScoringConfig,
) -> EvaluateResponse:
cprint("run_scorer")
cprint(f"run_scorer: on {dataset_config} with {eval_scoring_config}", "green")
run_task = RunScoringTask()
eval_result = await run_task.run(dataset_config, eval_scoring_config)