mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 07:14:20 +00:00
move eval_task_config to client
This commit is contained in:
parent
d2b62157a3
commit
cccd5be090
3 changed files with 74 additions and 114 deletions
|
@ -46,23 +46,13 @@ class EvaluationClient(Evals):
|
|||
|
||||
async def run_evals(
|
||||
self,
|
||||
model: str,
|
||||
task: str,
|
||||
dataset: Optional[str] = None,
|
||||
eval_task_config: Optional[EvaluateTaskConfig] = None,
|
||||
eval_task_config: EvaluateTaskConfig,
|
||||
) -> EvaluateResponse:
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
f"{self.base_url}/evals/run_eval_task",
|
||||
json={
|
||||
"model": model,
|
||||
"task": task,
|
||||
"dataset": dataset,
|
||||
"eval_task_config": (
|
||||
json.loads(eval_task_config.json())
|
||||
if eval_task_config
|
||||
else None
|
||||
),
|
||||
"eval_task_config": json.loads(eval_task_config.json()),
|
||||
},
|
||||
headers={"Content-Type": "application/json"},
|
||||
timeout=3600,
|
||||
|
@ -94,85 +84,88 @@ async def run_main(host: str, port: int, eval_dataset_path: str = ""):
|
|||
dataset_client = DatasetsClient(f"http://{host}:{port}")
|
||||
|
||||
# Full Eval Task
|
||||
|
||||
# # 1. register custom dataset
|
||||
# response = await dataset_client.create_dataset(
|
||||
# dataset_def=CustomDatasetDef(
|
||||
# identifier="mmlu-simple-eval-en",
|
||||
# url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
|
||||
# ),
|
||||
# )
|
||||
# cprint(f"datasets/create: {response}", "cyan")
|
||||
|
||||
# # 2. run evals on the registered dataset
|
||||
# response = await client.run_evals(
|
||||
# model="Llama3.1-8B-Instruct",
|
||||
# dataset="mmlu-simple-eval-en",
|
||||
# task="mmlu",
|
||||
# )
|
||||
|
||||
# if response.formatted_report:
|
||||
# cprint(response.formatted_report, "green")
|
||||
# else:
|
||||
# cprint(f"Response: {response}", "green")
|
||||
|
||||
# Scoring Task
|
||||
# 1. register huggingface dataset
|
||||
response = await dataset_client.create_dataset(
|
||||
dataset_def=HuggingfaceDatasetDef(
|
||||
identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
|
||||
dataset_path="meta-llama/Llama-3.1-8B-Instruct-evals",
|
||||
dataset_name="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
|
||||
rename_columns_map={
|
||||
"output_parsed_answer": "generated_answer",
|
||||
"input_correct_responses": "expected_answer",
|
||||
},
|
||||
kwargs={"split": "latest"},
|
||||
)
|
||||
)
|
||||
cprint(response, "cyan")
|
||||
|
||||
# 1. register custom dataset
|
||||
response = await dataset_client.create_dataset(
|
||||
dataset_def=CustomDatasetDef(
|
||||
identifier="rag-evals",
|
||||
url=data_url_from_file(eval_dataset_path),
|
||||
rename_columns_map={
|
||||
"query": "input_query",
|
||||
},
|
||||
)
|
||||
)
|
||||
cprint(response, "cyan")
|
||||
|
||||
# 2. run evals on the registered dataset
|
||||
response = await client.run_scorer(
|
||||
dataset_config=EvaluateDatasetConfig(
|
||||
dataset_identifier="rag-evals",
|
||||
# dataset_identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
|
||||
row_limit=10,
|
||||
identifier="mmlu-simple-eval-en",
|
||||
url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
|
||||
),
|
||||
eval_scoring_config=EvaluateScoringConfig(
|
||||
)
|
||||
cprint(f"datasets/create: {response}", "cyan")
|
||||
|
||||
# # 2. run evals on the registered dataset
|
||||
eval_task_config = EvaluateTaskConfig(
|
||||
dataset_config=EvaluateDatasetConfig(
|
||||
dataset_identifier="mmlu-simple-eval-en",
|
||||
row_limit=3,
|
||||
),
|
||||
processor_config=EvaluateProcessorConfig(
|
||||
processor_identifier="mmlu",
|
||||
),
|
||||
generation_config=EvaluateModelGenerationConfig(
|
||||
model="Llama3.1-8B-Instruct",
|
||||
),
|
||||
scoring_config=EvaluateScoringConfig(
|
||||
scorer_config_list=[
|
||||
EvaluateSingleScorerConfig(scorer_name="accuracy"),
|
||||
EvaluateSingleScorerConfig(
|
||||
scorer_name="braintrust::answer-correctness"
|
||||
),
|
||||
EvaluateSingleScorerConfig(scorer_name="random"),
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
response = await client.run_evals(
|
||||
eval_task_config=eval_task_config,
|
||||
)
|
||||
for k, v in response.eval_result.metrics.items():
|
||||
cprint(f"{k}: {v}", "green")
|
||||
|
||||
# Eleuther Eval Task
|
||||
# response = await client.run_evals(
|
||||
# model="Llama3.1-8B-Instruct",
|
||||
# # task="meta_mmlu_pro_instruct",
|
||||
# task="meta_ifeval",
|
||||
# eval_task_config=EvaluateTaskConfig(
|
||||
# n_samples=2,
|
||||
# Scoring Task
|
||||
# # 1. register huggingface dataset
|
||||
# response = await dataset_client.create_dataset(
|
||||
# dataset_def=HuggingfaceDatasetDef(
|
||||
# identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
|
||||
# dataset_path="meta-llama/Llama-3.1-8B-Instruct-evals",
|
||||
# dataset_name="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
|
||||
# rename_columns_map={
|
||||
# "output_parsed_answer": "generated_answer",
|
||||
# "input_correct_responses": "expected_answer",
|
||||
# },
|
||||
# kwargs={"split": "latest"},
|
||||
# )
|
||||
# )
|
||||
# cprint(response, "cyan")
|
||||
|
||||
# # register custom dataset from file path
|
||||
# response = await dataset_client.create_dataset(
|
||||
# dataset_def=CustomDatasetDef(
|
||||
# identifier="rag-evals",
|
||||
# url=data_url_from_file(eval_dataset_path),
|
||||
# rename_columns_map={
|
||||
# "query": "input_query",
|
||||
# },
|
||||
# )
|
||||
# )
|
||||
# cprint(response, "cyan")
|
||||
|
||||
# # 2. run evals on the registered dataset
|
||||
# response = await client.run_scorer(
|
||||
# dataset_config=EvaluateDatasetConfig(
|
||||
# dataset_identifier="rag-evals",
|
||||
# # dataset_identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
|
||||
# row_limit=10,
|
||||
# ),
|
||||
# eval_scoring_config=EvaluateScoringConfig(
|
||||
# scorer_config_list=[
|
||||
# EvaluateSingleScorerConfig(scorer_name="accuracy"),
|
||||
# EvaluateSingleScorerConfig(
|
||||
# scorer_name="braintrust::answer-correctness"
|
||||
# ),
|
||||
# ]
|
||||
# ),
|
||||
# )
|
||||
|
||||
# for k, v in response.eval_result.metrics.items():
|
||||
# cprint(f"{k}: {v}", "green")
|
||||
|
||||
|
||||
def main(host: str, port: int, eval_dataset_path: str = ""):
|
||||
asyncio.run(run_main(host, port, eval_dataset_path))
|
||||
|
|
|
@ -228,10 +228,7 @@ class Evals(Protocol):
|
|||
@webmethod(route="/evals/run_eval_task")
|
||||
async def run_eval_task(
|
||||
self,
|
||||
model: str,
|
||||
task: str,
|
||||
dataset: Optional[str] = None,
|
||||
eval_task_config: Optional[EvaluateTaskConfig] = None,
|
||||
eval_task_config: EvaluateTaskConfig,
|
||||
) -> EvaluateResponse: ...
|
||||
|
||||
@webmethod(route="/evals/run_scorer")
|
||||
|
|
|
@ -28,39 +28,9 @@ class MetaReferenceEvalsImpl(Evals):
|
|||
|
||||
async def run_eval_task(
|
||||
self,
|
||||
model: str,
|
||||
task: str,
|
||||
dataset: Optional[str] = None,
|
||||
eval_task_config: Optional[EvaluateTaskConfig] = None,
|
||||
eval_task_config: EvaluateTaskConfig,
|
||||
) -> EvaluateResponse:
|
||||
cprint(
|
||||
f"model={model}, dataset={dataset}, task={task}, eval_task_config={eval_task_config}",
|
||||
"red",
|
||||
)
|
||||
|
||||
if not dataset:
|
||||
raise ValueError("dataset must be specified for mete-reference evals")
|
||||
|
||||
if not eval_task_config:
|
||||
# construct eval task config from inputs
|
||||
eval_task_config = EvaluateTaskConfig(
|
||||
dataset_config=EvaluateDatasetConfig(
|
||||
dataset_identifier=dataset,
|
||||
row_limit=3,
|
||||
),
|
||||
processor_config=EvaluateProcessorConfig(
|
||||
processor_identifier="mmlu",
|
||||
),
|
||||
generation_config=EvaluateModelGenerationConfig(
|
||||
model=model,
|
||||
),
|
||||
scoring_config=EvaluateScoringConfig(
|
||||
scorer_config_list=[
|
||||
EvaluateSingleScorerConfig(scorer_name="accuracy"),
|
||||
EvaluateSingleScorerConfig(scorer_name="random"),
|
||||
]
|
||||
),
|
||||
)
|
||||
cprint(f"run_eval_task: on {eval_task_config}", "green")
|
||||
|
||||
run_task = RunEvalTask()
|
||||
eval_result = await run_task.run(eval_task_config, self.inference_api)
|
||||
|
@ -75,7 +45,7 @@ class MetaReferenceEvalsImpl(Evals):
|
|||
dataset_config: EvaluateDatasetConfig,
|
||||
eval_scoring_config: EvaluateScoringConfig,
|
||||
) -> EvaluateResponse:
|
||||
cprint("run_scorer")
|
||||
cprint(f"run_scorer: on {dataset_config} with {eval_scoring_config}", "green")
|
||||
|
||||
run_task = RunScoringTask()
|
||||
eval_result = await run_task.run(dataset_config, eval_scoring_config)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue