huggingface provider

This commit is contained in:
Xi Yan 2024-11-07 15:20:22 -08:00
parent cc6edf6287
commit d1633dc412
5 changed files with 99 additions and 34 deletions

View file

@ -9,7 +9,12 @@ import pytest
from llama_models.llama3.api import SamplingParams
from llama_stack.apis.eval.eval import AppEvalTaskConfig, EvalTaskDef, ModelCandidate
from llama_stack.apis.eval.eval import (
AppEvalTaskConfig,
BenchmarkEvalTaskConfig,
EvalTaskDef,
ModelCandidate,
)
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
@ -36,6 +41,12 @@ class Testeval:
await register_dataset(
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
)
provider = datasetio_impl.routing_table.get_provider_impl(
"test_dataset_for_eval"
)
if provider.__provider_spec__.provider_type != "meta-reference":
pytest.skip("Only meta-reference provider supports registering datasets")
response = await datasets_impl.list_datasets()
assert len(response) == 1
rows = await datasetio_impl.get_rows_paginated(
@ -69,6 +80,11 @@ class Testeval:
await register_dataset(
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
)
provider = datasetio_impl.routing_table.get_provider_impl(
"test_dataset_for_eval"
)
if provider.__provider_spec__.provider_type != "meta-reference":
pytest.skip("Only meta-reference provider supports registering datasets")
scoring_functions = [
"meta-reference::llm_as_judge_8b_correctness",
@ -107,27 +123,29 @@ class Testeval:
async def test_eval_run_benchmark_eval(self, eval_stack):
eval_impl, eval_tasks_impl, _, _, datasetio_impl, datasets_impl = eval_stack
response = await datasets_impl.list_datasets()
assert len(response) == 1
assert len(response) > 0
if response[0].provider_id != "huggingface":
pytest.skip(
"Only huggingface provider supports pre-registered benchmarks datasets"
)
rows = await datasetio_impl.get_rows_paginated(
dataset_id="llamastack_mmlu",
rows_in_page=3,
)
assert len(rows.rows) == 3
# list benchmarks
response = await eval_tasks_impl.list_eval_tasks()
assert len(response) > 0
scoring_functions = [
"meta-reference::regex_parser_multiple_choice_answer",
]
response = await eval_impl.evaluate_rows(
input_rows=rows.rows,
scoring_functions=scoring_functions,
eval_task_config=AppEvalTaskConfig(
benchmark_id = "meta-reference-mmlu"
response = await eval_impl.run_benchmark(
benchmark_id=benchmark_id,
benchmark_config=BenchmarkEvalTaskConfig(
eval_candidate=ModelCandidate(
model="Llama3.2-3B-Instruct",
sampling_params=SamplingParams(),
),
num_examples=3,
),
)
print(response)
job_status = await eval_impl.job_status(response.job_id, benchmark_id)
assert job_status and job_status.value == "completed"
eval_response = await eval_impl.job_result(response.job_id, benchmark_id)
assert eval_response is not None
assert len(eval_response.generations) == 3