mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-08 04:54:38 +00:00
chore: turn OpenAIMixin into a pydantic.BaseModel (#3671)
# What does this PR do? - implement get_api_key instead of relying on LiteLLMOpenAIMixin.get_api_key - remove use of LiteLLMOpenAIMixin - add default initialize/shutdown methods to OpenAIMixin - remove __init__s to allow proper pydantic construction - remove dead code from vllm adapter and associated / duplicate unit tests - update vllm adapter to use openaimixin for model registration - remove ModelRegistryHelper from fireworks & together adapters - remove Inference from nvidia adapter - complete type hints on embedding_model_metadata - allow extra fields on OpenAIMixin, for model_store, __provider_id__, etc - new recordings for ollama - enhance the list models error handling - update cerebras (remove cerebras-cloud-sdk) and anthropic (custom model listing) inference adapters - parametrized test_inference_client_caching - remove cerebras, databricks, fireworks, together from blanket mypy exclude - removed unnecessary litellm deps ## Test Plan ci
This commit is contained in:
parent
724dac498c
commit
d23ed26238
131 changed files with 83634 additions and 1760 deletions
|
@ -6,39 +6,14 @@
|
|||
|
||||
from urllib.parse import urljoin
|
||||
|
||||
from cerebras.cloud.sdk import AsyncCerebras
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
CompletionRequest,
|
||||
Inference,
|
||||
OpenAIEmbeddingsResponse,
|
||||
TopKSamplingStrategy,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
get_sampling_options,
|
||||
)
|
||||
from llama_stack.apis.inference import OpenAIEmbeddingsResponse
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
)
|
||||
|
||||
from .config import CerebrasImplConfig
|
||||
|
||||
|
||||
class CerebrasInferenceAdapter(
|
||||
OpenAIMixin,
|
||||
Inference,
|
||||
):
|
||||
def __init__(self, config: CerebrasImplConfig) -> None:
|
||||
self.config = config
|
||||
|
||||
# TODO: make this use provider data, etc. like other providers
|
||||
self._cerebras_client = AsyncCerebras(
|
||||
base_url=self.config.base_url,
|
||||
api_key=self.config.api_key.get_secret_value(),
|
||||
)
|
||||
class CerebrasInferenceAdapter(OpenAIMixin):
|
||||
config: CerebrasImplConfig
|
||||
|
||||
def get_api_key(self) -> str:
|
||||
return self.config.api_key.get_secret_value()
|
||||
|
@ -46,31 +21,6 @@ class CerebrasInferenceAdapter(
|
|||
def get_base_url(self) -> str:
|
||||
return urljoin(self.config.base_url, "v1")
|
||||
|
||||
async def initialize(self) -> None:
|
||||
return
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
|
||||
if request.sampling_params and isinstance(request.sampling_params.strategy, TopKSamplingStrategy):
|
||||
raise ValueError("`top_k` not supported by Cerebras")
|
||||
|
||||
prompt = ""
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
prompt = await chat_completion_request_to_prompt(request, self.get_llama_model(request.model))
|
||||
elif isinstance(request, CompletionRequest):
|
||||
prompt = await completion_request_to_prompt(request)
|
||||
else:
|
||||
raise ValueError(f"Unknown request type {type(request)}")
|
||||
|
||||
return {
|
||||
"model": request.model,
|
||||
"prompt": prompt,
|
||||
"stream": request.stream,
|
||||
**get_sampling_options(request.sampling_params),
|
||||
}
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue