mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-07 20:50:52 +00:00
chore: turn OpenAIMixin into a pydantic.BaseModel (#3671)
# What does this PR do? - implement get_api_key instead of relying on LiteLLMOpenAIMixin.get_api_key - remove use of LiteLLMOpenAIMixin - add default initialize/shutdown methods to OpenAIMixin - remove __init__s to allow proper pydantic construction - remove dead code from vllm adapter and associated / duplicate unit tests - update vllm adapter to use openaimixin for model registration - remove ModelRegistryHelper from fireworks & together adapters - remove Inference from nvidia adapter - complete type hints on embedding_model_metadata - allow extra fields on OpenAIMixin, for model_store, __provider_id__, etc - new recordings for ollama - enhance the list models error handling - update cerebras (remove cerebras-cloud-sdk) and anthropic (custom model listing) inference adapters - parametrized test_inference_client_caching - remove cerebras, databricks, fireworks, together from blanket mypy exclude - removed unnecessary litellm deps ## Test Plan ci
This commit is contained in:
parent
724dac498c
commit
d23ed26238
131 changed files with 83634 additions and 1760 deletions
|
@ -17,6 +17,6 @@ async def get_adapter_impl(config: FireworksImplConfig, _deps):
|
|||
from .fireworks import FireworksInferenceAdapter
|
||||
|
||||
assert isinstance(config, FireworksImplConfig), f"Unexpected config type: {type(config)}"
|
||||
impl = FireworksInferenceAdapter(config)
|
||||
impl = FireworksInferenceAdapter(config=config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
@ -5,124 +5,26 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from fireworks.client import Fireworks
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
)
|
||||
from llama_stack.core.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
convert_message_to_openai_dict,
|
||||
get_sampling_options,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
from .config import FireworksImplConfig
|
||||
|
||||
logger = get_logger(name=__name__, category="inference::fireworks")
|
||||
|
||||
|
||||
class FireworksInferenceAdapter(OpenAIMixin, Inference, NeedsRequestProviderData):
|
||||
embedding_model_metadata = {
|
||||
class FireworksInferenceAdapter(OpenAIMixin):
|
||||
config: FireworksImplConfig
|
||||
|
||||
embedding_model_metadata: dict[str, dict[str, int]] = {
|
||||
"nomic-ai/nomic-embed-text-v1.5": {"embedding_dimension": 768, "context_length": 8192},
|
||||
"accounts/fireworks/models/qwen3-embedding-8b": {"embedding_dimension": 4096, "context_length": 40960},
|
||||
}
|
||||
|
||||
def __init__(self, config: FireworksImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self)
|
||||
self.config = config
|
||||
self.allowed_models = config.allowed_models
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
provider_data_api_key_field: str = "fireworks_api_key"
|
||||
|
||||
def get_api_key(self) -> str:
|
||||
config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None
|
||||
if config_api_key:
|
||||
return config_api_key
|
||||
else:
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.fireworks_api_key:
|
||||
raise ValueError(
|
||||
'Pass Fireworks API Key in the header X-LlamaStack-Provider-Data as { "fireworks_api_key": <your api key>}'
|
||||
)
|
||||
return provider_data.fireworks_api_key
|
||||
return self.config.api_key.get_secret_value() if self.config.api_key else None # type: ignore[return-value]
|
||||
|
||||
def get_base_url(self) -> str:
|
||||
return "https://api.fireworks.ai/inference/v1"
|
||||
|
||||
def _get_client(self) -> Fireworks:
|
||||
fireworks_api_key = self.get_api_key()
|
||||
return Fireworks(api_key=fireworks_api_key)
|
||||
|
||||
def _build_options(
|
||||
self,
|
||||
sampling_params: SamplingParams | None,
|
||||
fmt: ResponseFormat | None,
|
||||
logprobs: LogProbConfig | None,
|
||||
) -> dict:
|
||||
options = get_sampling_options(sampling_params)
|
||||
options.setdefault("max_tokens", 512)
|
||||
|
||||
if fmt:
|
||||
if fmt.type == ResponseFormatType.json_schema.value:
|
||||
options["response_format"] = {
|
||||
"type": "json_object",
|
||||
"schema": fmt.json_schema,
|
||||
}
|
||||
elif fmt.type == ResponseFormatType.grammar.value:
|
||||
options["response_format"] = {
|
||||
"type": "grammar",
|
||||
"grammar": fmt.bnf,
|
||||
}
|
||||
else:
|
||||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
if logprobs and logprobs.top_k:
|
||||
options["logprobs"] = logprobs.top_k
|
||||
if options["logprobs"] <= 0 or options["logprobs"] >= 5:
|
||||
raise ValueError("Required range: 0 < top_k < 5")
|
||||
|
||||
return options
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
input_dict = {}
|
||||
media_present = request_has_media(request)
|
||||
|
||||
llama_model = self.get_llama_model(request.model)
|
||||
# TODO: tools are never added to the request, so we need to add them here
|
||||
if media_present or not llama_model:
|
||||
input_dict["messages"] = [await convert_message_to_openai_dict(m, download=True) for m in request.messages]
|
||||
else:
|
||||
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
|
||||
|
||||
# Fireworks always prepends with BOS
|
||||
if "prompt" in input_dict:
|
||||
if input_dict["prompt"].startswith("<|begin_of_text|>"):
|
||||
input_dict["prompt"] = input_dict["prompt"][len("<|begin_of_text|>") :]
|
||||
|
||||
params = {
|
||||
"model": request.model,
|
||||
**input_dict,
|
||||
"stream": bool(request.stream),
|
||||
**self._build_options(request.sampling_params, request.response_format, request.logprobs),
|
||||
}
|
||||
logger.debug(f"params to fireworks: {params}")
|
||||
|
||||
return params
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue