mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-07 12:47:37 +00:00
chore: turn OpenAIMixin into a pydantic.BaseModel (#3671)
# What does this PR do? - implement get_api_key instead of relying on LiteLLMOpenAIMixin.get_api_key - remove use of LiteLLMOpenAIMixin - add default initialize/shutdown methods to OpenAIMixin - remove __init__s to allow proper pydantic construction - remove dead code from vllm adapter and associated / duplicate unit tests - update vllm adapter to use openaimixin for model registration - remove ModelRegistryHelper from fireworks & together adapters - remove Inference from nvidia adapter - complete type hints on embedding_model_metadata - allow extra fields on OpenAIMixin, for model_store, __provider_id__, etc - new recordings for ollama - enhance the list models error handling - update cerebras (remove cerebras-cloud-sdk) and anthropic (custom model listing) inference adapters - parametrized test_inference_client_caching - remove cerebras, databricks, fireworks, together from blanket mypy exclude - removed unnecessary litellm deps ## Test Plan ci
This commit is contained in:
parent
724dac498c
commit
d23ed26238
131 changed files with 83634 additions and 1760 deletions
|
@ -5,53 +5,21 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from collections.abc import Iterable
|
||||
|
||||
from huggingface_hub import AsyncInferenceClient, HfApi
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
Inference,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
)
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.apis.models.models import ModelType
|
||||
from llama_stack.apis.inference import OpenAIEmbeddingsResponse
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.sku_list import all_registered_models
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ModelRegistryHelper,
|
||||
build_hf_repo_model_entry,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
get_sampling_options,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_model_input_info,
|
||||
)
|
||||
|
||||
from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig
|
||||
|
||||
log = get_logger(name=__name__, category="inference::tgi")
|
||||
|
||||
|
||||
def build_hf_repo_model_entries():
|
||||
return [
|
||||
build_hf_repo_model_entry(
|
||||
model.huggingface_repo,
|
||||
model.descriptor(),
|
||||
)
|
||||
for model in all_registered_models()
|
||||
if model.huggingface_repo
|
||||
]
|
||||
|
||||
|
||||
class _HfAdapter(
|
||||
OpenAIMixin,
|
||||
Inference,
|
||||
):
|
||||
class _HfAdapter(OpenAIMixin):
|
||||
url: str
|
||||
api_key: SecretStr
|
||||
|
||||
|
@ -61,90 +29,14 @@ class _HfAdapter(
|
|||
|
||||
overwrite_completion_id = True # TGI always returns id=""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.register_helper = ModelRegistryHelper(build_hf_repo_model_entries())
|
||||
self.huggingface_repo_to_llama_model_id = {
|
||||
model.huggingface_repo: model.descriptor() for model in all_registered_models() if model.huggingface_repo
|
||||
}
|
||||
|
||||
def get_api_key(self):
|
||||
return self.api_key.get_secret_value()
|
||||
|
||||
def get_base_url(self):
|
||||
return self.url
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
models = []
|
||||
async for model in self.client.models.list():
|
||||
models.append(
|
||||
Model(
|
||||
identifier=model.id,
|
||||
provider_resource_id=model.id,
|
||||
provider_id=self.__provider_id__,
|
||||
metadata={},
|
||||
model_type=ModelType.llm,
|
||||
)
|
||||
)
|
||||
return models
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
if model.provider_resource_id != self.model_id:
|
||||
raise ValueError(
|
||||
f"Model {model.provider_resource_id} does not match the model {self.model_id} served by TGI."
|
||||
)
|
||||
return model
|
||||
|
||||
async def unregister_model(self, model_id: str) -> None:
|
||||
pass
|
||||
|
||||
def _get_max_new_tokens(self, sampling_params, input_tokens):
|
||||
return min(
|
||||
sampling_params.max_tokens or (self.max_tokens - input_tokens),
|
||||
self.max_tokens - input_tokens - 1,
|
||||
)
|
||||
|
||||
def _build_options(
|
||||
self,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
fmt: ResponseFormat = None,
|
||||
):
|
||||
options = get_sampling_options(sampling_params)
|
||||
# TGI does not support temperature=0 when using greedy sampling
|
||||
# We set it to 1e-3 instead, anything lower outputs garbage from TGI
|
||||
# We can use top_p sampling strategy to specify lower temperature
|
||||
if abs(options["temperature"]) < 1e-10:
|
||||
options["temperature"] = 1e-3
|
||||
|
||||
# delete key "max_tokens" from options since its not supported by the API
|
||||
options.pop("max_tokens", None)
|
||||
if fmt:
|
||||
if fmt.type == ResponseFormatType.json_schema.value:
|
||||
options["grammar"] = {
|
||||
"type": "json",
|
||||
"value": fmt.json_schema,
|
||||
}
|
||||
elif fmt.type == ResponseFormatType.grammar.value:
|
||||
raise ValueError("Grammar response format not supported yet")
|
||||
else:
|
||||
raise ValueError(f"Unexpected response format: {fmt.type}")
|
||||
|
||||
return options
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
prompt, input_tokens = await chat_completion_request_to_model_input_info(
|
||||
request, self.register_helper.get_llama_model(request.model)
|
||||
)
|
||||
return dict(
|
||||
prompt=prompt,
|
||||
stream=request.stream,
|
||||
details=True,
|
||||
max_new_tokens=self._get_max_new_tokens(request.sampling_params, input_tokens),
|
||||
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
|
||||
**self._build_options(request.sampling_params, request.response_format),
|
||||
)
|
||||
async def list_provider_model_ids(self) -> Iterable[str]:
|
||||
return [self.model_id]
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue