implement embedding generation in supported inference providers (#589)

This PR adds the ability to generate embeddings in all supported
inference providers.

```
pytest -v -s llama_stack/providers/tests/inference/test_embeddings.py -k "bedrock" --inference-model="amazon.titan-embed-text-v2:0"  --env EMBEDDING_DIMENSION=1024

 pytest -v -s -k "vllm"  --inferrence-model="intfloat/e5-mistral-7b-instruct"  llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=4096  --env VLLM_URL="http://localhost:9798/v1"

pytest -v -s --inference-model="nomic-ai/nomic-embed-text-v1.5"  llama_stack/providers/tests/inference/test_embeddings.py  -k "fireworks"  --env FIREWORKS_API_KEY=<API_KEY>--env EMBEDDING_DIMENSION=128

pytest -v -s --inference-model="togethercomputer/m2-bert-80M-2k-retrieval"  llama_stack/providers/tests/inference/test_embeddings.py  -k "together"  --env TOGETHER_API_KEY=<API_KEY>--env EMBEDDING_DIMENSION=768

pytest -v -s -k "ollama"  --inference-model="all-minilm:v8"  llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=384

 torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="sentence-transformers/all-MiniLM-L6-v2"  llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=384

```
This commit is contained in:
Dinesh Yeduguru 2024-12-12 11:17:39 -08:00
parent 6a23f24ee0
commit d362d2d740
32 changed files with 597 additions and 143 deletions

View file

@ -48,7 +48,6 @@ class ModelInput(CommonModelFields):
provider_id: Optional[str] = None
provider_model_id: Optional[str] = None
model_type: Optional[ModelType] = ModelType.llm
model_config = ConfigDict(protected_namespaces=())

View file

@ -200,10 +200,13 @@ API responses, specify the adapter here.
return self.adapter.provider_data_validator
def remote_provider_spec(api: Api, adapter: AdapterSpec) -> RemoteProviderSpec:
def remote_provider_spec(
api: Api, adapter: AdapterSpec, api_dependencies: Optional[List[Api]] = None
) -> RemoteProviderSpec:
return RemoteProviderSpec(
api=api,
provider_type=f"remote::{adapter.adapter_type}",
config_class=adapter.config_class,
adapter=adapter,
api_dependencies=api_dependencies or [],
)

View file

@ -16,12 +16,14 @@ from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.providers.utils.inference.model_registry import build_model_alias
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.embedding_mixin import (
SentenceTransformerEmbeddingMixin,
)
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.prompt_adapter import (
convert_image_media_to_url,
request_has_media,
)
from .config import MetaReferenceInferenceConfig
from .generation import Llama
from .model_parallel import LlamaModelParallelGenerator
@ -32,12 +34,17 @@ log = logging.getLogger(__name__)
SEMAPHORE = asyncio.Semaphore(1)
class MetaReferenceInferenceImpl(Inference, ModelRegistryHelper, ModelsProtocolPrivate):
class MetaReferenceInferenceImpl(
SentenceTransformerEmbeddingMixin,
Inference,
ModelsProtocolPrivate,
):
def __init__(self, config: MetaReferenceInferenceConfig) -> None:
self.config = config
model = resolve_model(config.model)
ModelRegistryHelper.__init__(
self,
if model is None:
raise RuntimeError(f"Unknown model: {config.model}, Run `llama model list`")
self.model_registry_helper = ModelRegistryHelper(
[
build_model_alias(
model.descriptor(),
@ -45,8 +52,6 @@ class MetaReferenceInferenceImpl(Inference, ModelRegistryHelper, ModelsProtocolP
)
],
)
if model is None:
raise RuntimeError(f"Unknown model: {config.model}, Run `llama model list`")
self.model = model
# verify that the checkpoint actually is for this model lol
@ -76,6 +81,12 @@ class MetaReferenceInferenceImpl(Inference, ModelRegistryHelper, ModelsProtocolP
async def unregister_model(self, model_id: str) -> None:
pass
async def register_model(self, model: Model) -> Model:
model = await self.model_registry_helper.register_model(model)
if model.model_type == ModelType.embedding_model:
self._load_sentence_transformer_model(model.provider_resource_id)
return model
async def completion(
self,
model_id: str,
@ -394,13 +405,6 @@ class MetaReferenceInferenceImpl(Inference, ModelRegistryHelper, ModelsProtocolP
for x in impl():
yield x
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()
async def request_with_localized_media(
request: Union[ChatCompletionRequest, CompletionRequest],

View file

@ -0,0 +1,20 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.inline.inference.sentence_transformers.config import (
SentenceTransformersInferenceConfig,
)
async def get_provider_impl(
config: SentenceTransformersInferenceConfig,
_deps,
):
from .sentence_transformers import SentenceTransformersInferenceImpl
impl = SentenceTransformersInferenceImpl(config)
await impl.initialize()
return impl

View file

@ -0,0 +1,10 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
class SentenceTransformersInferenceConfig(BaseModel): ...

View file

@ -0,0 +1,74 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
from typing import AsyncGenerator, List, Optional, Union
from llama_stack.apis.inference import (
CompletionResponse,
Inference,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
from llama_stack.providers.utils.inference.embedding_mixin import (
SentenceTransformerEmbeddingMixin,
)
from .config import SentenceTransformersInferenceConfig
log = logging.getLogger(__name__)
class SentenceTransformersInferenceImpl(
SentenceTransformerEmbeddingMixin,
Inference,
ModelsProtocolPrivate,
):
def __init__(self, config: SentenceTransformersInferenceConfig) -> None:
self.config = config
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def register_model(self, model: Model) -> None:
_ = self._load_sentence_transformer_model(model.provider_resource_id)
return model
async def unregister_model(self, model_id: str) -> None:
pass
async def completion(
self,
model_id: str,
content: str,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, AsyncGenerator]:
raise ValueError("Sentence transformers don't support completion")
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
raise ValueError("Sentence transformers don't support chat completion")

View file

@ -4,16 +4,19 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from llama_stack.providers.datatypes import Api, ProviderSpec
from .config import FaissImplConfig
async def get_provider_impl(config: FaissImplConfig, _deps):
async def get_provider_impl(config: FaissImplConfig, deps: Dict[Api, ProviderSpec]):
from .faiss import FaissMemoryImpl
assert isinstance(
config, FaissImplConfig
), f"Unexpected config type: {type(config)}"
impl = FaissMemoryImpl(config)
impl = FaissMemoryImpl(config, deps[Api.inference])
await impl.initialize()
return impl

View file

@ -19,11 +19,10 @@ from numpy.typing import NDArray
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.memory.vector_store import (
ALL_MINILM_L6_V2_DIMENSION,
BankWithIndex,
EmbeddingIndex,
)
@ -32,7 +31,8 @@ from .config import FaissImplConfig
logger = logging.getLogger(__name__)
MEMORY_BANKS_PREFIX = "memory_banks:v1::"
MEMORY_BANKS_PREFIX = "memory_banks:v2::"
FAISS_INDEX_PREFIX = "faiss_index:v2::"
class FaissIndex(EmbeddingIndex):
@ -56,7 +56,7 @@ class FaissIndex(EmbeddingIndex):
if not self.kvstore:
return
index_key = f"faiss_index:v1::{self.bank_id}"
index_key = f"{FAISS_INDEX_PREFIX}{self.bank_id}"
stored_data = await self.kvstore.get(index_key)
if stored_data:
@ -85,16 +85,25 @@ class FaissIndex(EmbeddingIndex):
"faiss_index": base64.b64encode(buffer.getvalue()).decode("utf-8"),
}
index_key = f"faiss_index:v1::{self.bank_id}"
index_key = f"{FAISS_INDEX_PREFIX}{self.bank_id}"
await self.kvstore.set(key=index_key, value=json.dumps(data))
async def delete(self):
if not self.kvstore or not self.bank_id:
return
await self.kvstore.delete(f"faiss_index:v1::{self.bank_id}")
await self.kvstore.delete(f"{FAISS_INDEX_PREFIX}{self.bank_id}")
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
# Add dimension check
embedding_dim = (
embeddings.shape[1] if len(embeddings.shape) > 1 else embeddings.shape[0]
)
if embedding_dim != self.index.d:
raise ValueError(
f"Embedding dimension mismatch. Expected {self.index.d}, got {embedding_dim}"
)
indexlen = len(self.id_by_index)
for i, chunk in enumerate(chunks):
self.chunk_by_index[indexlen + i] = chunk
@ -124,8 +133,9 @@ class FaissIndex(EmbeddingIndex):
class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
def __init__(self, config: FaissImplConfig) -> None:
def __init__(self, config: FaissImplConfig, inference_api: Api.inference) -> None:
self.config = config
self.inference_api = inference_api
self.cache = {}
self.kvstore = None
@ -139,10 +149,11 @@ class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
for bank_data in stored_banks:
bank = VectorMemoryBank.model_validate_json(bank_data)
index = BankWithIndex(
bank=bank,
index=await FaissIndex.create(
ALL_MINILM_L6_V2_DIMENSION, self.kvstore, bank.identifier
bank,
await FaissIndex.create(
bank.embedding_dimension, self.kvstore, bank.identifier
),
self.inference_api,
)
self.cache[bank.identifier] = index
@ -166,13 +177,13 @@ class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
)
# Store in cache
index = BankWithIndex(
bank=memory_bank,
index=await FaissIndex.create(
ALL_MINILM_L6_V2_DIMENSION, self.kvstore, memory_bank.identifier
self.cache[memory_bank.identifier] = BankWithIndex(
memory_bank,
await FaissIndex.create(
memory_bank.embedding_dimension, self.kvstore, memory_bank.identifier
),
self.inference_api,
)
self.cache[memory_bank.identifier] = index
async def list_memory_banks(self) -> List[MemoryBank]:
return [i.bank for i in self.cache.values()]

View file

@ -18,6 +18,7 @@ META_REFERENCE_DEPS = [
"transformers",
"zmq",
"lm-format-enforcer",
"sentence-transformers",
]
@ -52,6 +53,13 @@ def available_providers() -> List[ProviderSpec]:
module="llama_stack.providers.inline.inference.vllm",
config_class="llama_stack.providers.inline.inference.vllm.VLLMConfig",
),
InlineProviderSpec(
api=Api.inference,
provider_type="inline::sentence-transformers",
pip_packages=["sentence-transformers"],
module="llama_stack.providers.inline.inference.sentence_transformers",
config_class="llama_stack.providers.inline.inference.sentence_transformers.config.SentenceTransformersInferenceConfig",
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(

View file

@ -39,6 +39,7 @@ def available_providers() -> List[ProviderSpec]:
module="llama_stack.providers.inline.memory.faiss",
config_class="llama_stack.providers.inline.memory.faiss.FaissImplConfig",
deprecation_warning="Please use the `inline::faiss` provider instead.",
api_dependencies=[Api.inference],
),
InlineProviderSpec(
api=Api.memory,
@ -46,6 +47,7 @@ def available_providers() -> List[ProviderSpec]:
pip_packages=EMBEDDING_DEPS + ["faiss-cpu"],
module="llama_stack.providers.inline.memory.faiss",
config_class="llama_stack.providers.inline.memory.faiss.FaissImplConfig",
api_dependencies=[Api.inference],
),
remote_provider_spec(
Api.memory,
@ -55,6 +57,7 @@ def available_providers() -> List[ProviderSpec]:
module="llama_stack.providers.remote.memory.chroma",
config_class="llama_stack.providers.remote.memory.chroma.ChromaRemoteImplConfig",
),
api_dependencies=[Api.inference],
),
InlineProviderSpec(
api=Api.memory,
@ -71,6 +74,7 @@ def available_providers() -> List[ProviderSpec]:
module="llama_stack.providers.remote.memory.pgvector",
config_class="llama_stack.providers.remote.memory.pgvector.PGVectorConfig",
),
api_dependencies=[Api.inference],
),
remote_provider_spec(
Api.memory,
@ -81,6 +85,7 @@ def available_providers() -> List[ProviderSpec]:
config_class="llama_stack.providers.remote.memory.weaviate.WeaviateConfig",
provider_data_validator="llama_stack.providers.remote.memory.weaviate.WeaviateRequestProviderData",
),
api_dependencies=[Api.inference],
),
remote_provider_spec(
api=Api.memory,
@ -90,6 +95,7 @@ def available_providers() -> List[ProviderSpec]:
module="llama_stack.providers.remote.memory.sample",
config_class="llama_stack.providers.remote.memory.sample.SampleConfig",
),
api_dependencies=[],
),
remote_provider_spec(
Api.memory,
@ -99,5 +105,6 @@ def available_providers() -> List[ProviderSpec]:
module="llama_stack.providers.remote.memory.qdrant",
config_class="llama_stack.providers.remote.memory.qdrant.QdrantConfig",
),
api_dependencies=[Api.inference],
),
]

View file

@ -5,6 +5,7 @@
# the root directory of this source tree.
from typing import * # noqa: F403
import json
from botocore.client import BaseClient
from llama_models.datatypes import CoreModelId
@ -19,8 +20,10 @@ from llama_stack.providers.utils.inference.model_registry import (
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.remote.inference.bedrock.config import BedrockConfig
from llama_stack.providers.utils.bedrock.client import create_bedrock_client
from llama_stack.providers.utils.inference.prompt_adapter import content_has_media
model_aliases = [
@ -448,4 +451,21 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()
model = await self.model_store.get_model(model_id)
embeddings = []
for content in contents:
assert not content_has_media(
content
), "Bedrock does not support media for embeddings"
input_text = interleaved_text_media_as_str(content)
input_body = {"inputText": input_text}
body = json.dumps(input_body)
response = self.client.invoke_model(
body=body,
modelId=model.provider_resource_id,
accept="application/json",
contentType="application/json",
)
response_body = json.loads(response.get("body").read())
embeddings.append(response_body.get("embedding"))
return EmbeddingsResponse(embeddings=embeddings)

View file

@ -13,7 +13,7 @@ from pydantic import BaseModel, Field
@json_schema_type
class FireworksImplConfig(BaseModel):
url: str = Field(
default="https://api.fireworks.ai/inference",
default="https://api.fireworks.ai/inference/v1",
description="The URL for the Fireworks server",
)
api_key: Optional[str] = Field(
@ -24,6 +24,6 @@ class FireworksImplConfig(BaseModel):
@classmethod
def sample_run_config(cls) -> Dict[str, Any]:
return {
"url": "https://api.fireworks.ai/inference",
"url": "https://api.fireworks.ai/inference/v1",
"api_key": "${env.FIREWORKS_API_KEY}",
}

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator
from typing import AsyncGenerator, List, Optional, Union
from fireworks.client import Fireworks
from llama_models.datatypes import CoreModelId
@ -28,6 +28,7 @@ from llama_stack.providers.utils.inference.openai_compat import (
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
content_has_media,
convert_message_to_dict,
request_has_media,
)
@ -89,17 +90,19 @@ class FireworksInferenceAdapter(
async def shutdown(self) -> None:
pass
def _get_client(self) -> Fireworks:
fireworks_api_key = None
def _get_api_key(self) -> str:
if self.config.api_key is not None:
fireworks_api_key = self.config.api_key
return self.config.api_key
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.fireworks_api_key:
raise ValueError(
'Pass Fireworks API Key in the header X-LlamaStack-ProviderData as { "fireworks_api_key": <your api key>}'
)
fireworks_api_key = provider_data.fireworks_api_key
return provider_data.fireworks_api_key
def _get_client(self) -> Fireworks:
fireworks_api_key = self._get_api_key()
return Fireworks(api_key=fireworks_api_key)
async def completion(
@ -264,4 +267,19 @@ class FireworksInferenceAdapter(
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()
model = await self.model_store.get_model(model_id)
kwargs = {}
if model.metadata.get("embedding_dimensions"):
kwargs["dimensions"] = model.metadata.get("embedding_dimensions")
assert all(
not content_has_media(content) for content in contents
), "Fireworks does not support media for embeddings"
response = self._get_client().embeddings.create(
model=model.provider_resource_id,
input=[interleaved_text_media_as_str(content) for content in contents],
**kwargs,
)
embeddings = [data.embedding for data in response.data]
return EmbeddingsResponse(embeddings=embeddings)

View file

@ -36,6 +36,7 @@ from llama_stack.providers.utils.inference.openai_compat import (
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
content_has_media,
convert_image_media_to_url,
request_has_media,
)
@ -321,9 +322,30 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()
model = await self.model_store.get_model(model_id)
assert all(
not content_has_media(content) for content in contents
), "Ollama does not support media for embeddings"
response = await self.client.embed(
model=model.provider_resource_id,
input=[interleaved_text_media_as_str(content) for content in contents],
)
embeddings = response["embeddings"]
return EmbeddingsResponse(embeddings=embeddings)
async def register_model(self, model: Model) -> Model:
# ollama does not have embedding models running. Check if the model is in list of available models.
if model.model_type == ModelType.embedding_model:
response = await self.client.list()
available_models = [m["model"] for m in response["models"]]
if model.provider_resource_id not in available_models:
raise ValueError(
f"Model '{model.provider_resource_id}' is not available in Ollama. "
f"Available models: {', '.join(available_models)}"
)
return model
model = await self.register_helper.register_model(model)
models = await self.client.ps()
available_models = [m["model"] for m in models["models"]]

View file

@ -31,6 +31,7 @@ from llama_stack.providers.utils.inference.openai_compat import (
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
content_has_media,
convert_message_to_dict,
request_has_media,
)
@ -253,4 +254,13 @@ class TogetherInferenceAdapter(
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()
model = await self.model_store.get_model(model_id)
assert all(
not content_has_media(content) for content in contents
), "Together does not support media for embeddings"
r = self._get_client().embeddings.create(
model=model.provider_resource_id,
input=[interleaved_text_media_as_str(content) for content in contents],
)
embeddings = [item.embedding for item in r.data]
return EmbeddingsResponse(embeddings=embeddings)

View file

@ -29,6 +29,7 @@ from llama_stack.providers.utils.inference.openai_compat import (
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
content_has_media,
convert_message_to_dict,
request_has_media,
)
@ -203,4 +204,20 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()
model = await self.model_store.get_model(model_id)
kwargs = {}
assert model.model_type == ModelType.embedding_model
assert model.metadata.get("embedding_dimensions")
kwargs["dimensions"] = model.metadata.get("embedding_dimensions")
assert all(
not content_has_media(content) for content in contents
), "VLLM does not support media for embeddings"
response = self.client.embeddings.create(
model=model.provider_resource_id,
input=[interleaved_text_media_as_str(content) for content in contents],
**kwargs,
)
embeddings = [data.embedding for data in response.data]
return EmbeddingsResponse(embeddings=embeddings)

View file

@ -4,12 +4,15 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from .config import ChromaRemoteImplConfig
from llama_stack.providers.datatypes import Api, ProviderSpec
async def get_adapter_impl(config: ChromaRemoteImplConfig, _deps):
async def get_adapter_impl(config: ChromaRemoteImplConfig, deps: Dict[Api, ProviderSpec]):
from .chroma import ChromaMemoryAdapter
impl = ChromaMemoryAdapter(config)
impl = ChromaMemoryAdapter(config, deps[Api.inference])
await impl.initialize()
return impl

View file

@ -13,8 +13,7 @@ import chromadb
from numpy.typing import NDArray
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
from llama_stack.providers.inline.memory.chroma import ChromaInlineImplConfig
from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
@ -87,10 +86,14 @@ class ChromaIndex(EmbeddingIndex):
class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
def __init__(
self, config: Union[ChromaRemoteImplConfig, ChromaInlineImplConfig]
self,
config: Union[ChromaRemoteImplConfig, ChromaInlineImplConfig],
inference_api: Api.inference,
) -> None:
log.info(f"Initializing ChromaMemoryAdapter with url: {config}")
self.config = config
self.inference_api = inference_api
self.client = None
self.cache = {}
@ -127,10 +130,9 @@ class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
metadata={"bank": memory_bank.model_dump_json()},
)
)
bank_index = BankWithIndex(
bank=memory_bank, index=ChromaIndex(self.client, collection)
self.cache[memory_bank.identifier] = BankWithIndex(
memory_bank, ChromaIndex(self.client, collection), self.inference_api
)
self.cache[memory_bank.identifier] = bank_index
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
await self.cache[memory_bank_id].index.delete()
@ -166,6 +168,8 @@ class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
collection = await maybe_await(self.client.get_collection(bank_id))
if not collection:
raise ValueError(f"Bank {bank_id} not found in Chroma")
index = BankWithIndex(bank=bank, index=ChromaIndex(self.client, collection))
index = BankWithIndex(
bank, ChromaIndex(self.client, collection), self.inference_api
)
self.cache[bank_id] = index
return index

View file

@ -4,12 +4,16 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from llama_stack.providers.datatypes import Api, ProviderSpec
from .config import PGVectorConfig
async def get_adapter_impl(config: PGVectorConfig, _deps):
async def get_adapter_impl(config: PGVectorConfig, deps: Dict[Api, ProviderSpec]):
from .pgvector import PGVectorMemoryAdapter
impl = PGVectorMemoryAdapter(config)
impl = PGVectorMemoryAdapter(config, deps[Api.inference])
await impl.initialize()
return impl

View file

@ -16,9 +16,9 @@ from pydantic import BaseModel, parse_obj_as
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
from llama_stack.providers.utils.memory.vector_store import (
ALL_MINILM_L6_V2_DIMENSION,
BankWithIndex,
EmbeddingIndex,
)
@ -120,8 +120,9 @@ class PGVectorIndex(EmbeddingIndex):
class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
def __init__(self, config: PGVectorConfig) -> None:
def __init__(self, config: PGVectorConfig, inference_api: Api.inference) -> None:
self.config = config
self.inference_api = inference_api
self.cursor = None
self.conn = None
self.cache = {}
@ -160,27 +161,17 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
async def shutdown(self) -> None:
pass
async def register_memory_bank(
self,
memory_bank: MemoryBank,
) -> None:
async def register_memory_bank(self, memory_bank: MemoryBank) -> None:
assert (
memory_bank.memory_bank_type == MemoryBankType.vector.value
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
upsert_models(
self.cursor,
[
(memory_bank.identifier, memory_bank),
],
upsert_models(self.cursor, [(memory_bank.identifier, memory_bank)])
index = PGVectorIndex(memory_bank, memory_bank.embedding_dimension, self.cursor)
self.cache[memory_bank.identifier] = BankWithIndex(
memory_bank, index, self.inference_api
)
index = BankWithIndex(
bank=memory_bank,
index=PGVectorIndex(memory_bank, ALL_MINILM_L6_V2_DIMENSION, self.cursor),
)
self.cache[memory_bank.identifier] = index
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
await self.cache[memory_bank_id].index.delete()
del self.cache[memory_bank_id]
@ -203,14 +194,13 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
index = await self._get_and_cache_bank_index(bank_id)
return await index.query_documents(query, params)
self.inference_api = inference_api
async def _get_and_cache_bank_index(self, bank_id: str) -> BankWithIndex:
if bank_id in self.cache:
return self.cache[bank_id]
bank = await self.memory_bank_store.get_memory_bank(bank_id)
index = BankWithIndex(
bank=bank,
index=PGVectorIndex(bank, ALL_MINILM_L6_V2_DIMENSION, self.cursor),
)
self.cache[bank_id] = index
return index
index = PGVectorIndex(bank, bank.embedding_dimension, self.cursor)
self.cache[bank_id] = BankWithIndex(bank, index, self.inference_api)
return self.cache[bank_id]

View file

@ -4,12 +4,16 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from llama_stack.providers.datatypes import Api, ProviderSpec
from .config import QdrantConfig
async def get_adapter_impl(config: QdrantConfig, _deps):
async def get_adapter_impl(config: QdrantConfig, deps: Dict[Api, ProviderSpec]):
from .qdrant import QdrantVectorMemoryAdapter
impl = QdrantVectorMemoryAdapter(config)
impl = QdrantVectorMemoryAdapter(config, deps[Api.inference])
await impl.initialize()
return impl

View file

@ -101,10 +101,11 @@ class QdrantIndex(EmbeddingIndex):
class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
def __init__(self, config: QdrantConfig) -> None:
def __init__(self, config: QdrantConfig, inference_api: Api.inference) -> None:
self.config = config
self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True))
self.cache = {}
self.inference_api = inference_api
async def initialize(self) -> None:
pass
@ -123,6 +124,7 @@ class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
index = BankWithIndex(
bank=memory_bank,
index=QdrantIndex(self.client, memory_bank.identifier),
inference_api=self.inference_api,
)
self.cache[memory_bank.identifier] = index
@ -138,6 +140,7 @@ class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
index = BankWithIndex(
bank=bank,
index=QdrantIndex(client=self.client, collection_name=bank_id),
inference_api=self.inference_api,
)
self.cache[bank_id] = index
return index

View file

@ -4,12 +4,16 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from llama_stack.providers.datatypes import Api, ProviderSpec
from .config import WeaviateConfig, WeaviateRequestProviderData # noqa: F401
async def get_adapter_impl(config: WeaviateConfig, _deps):
async def get_adapter_impl(config: WeaviateConfig, deps: Dict[Api, ProviderSpec]):
from .weaviate import WeaviateMemoryAdapter
impl = WeaviateMemoryAdapter(config)
impl = WeaviateMemoryAdapter(config, deps[Api.inference])
await impl.initialize()
return impl

View file

@ -12,10 +12,11 @@ import weaviate
import weaviate.classes as wvc
from numpy.typing import NDArray
from weaviate.classes.init import Auth
from weaviate.classes.query import Filter
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex,
@ -80,12 +81,21 @@ class WeaviateIndex(EmbeddingIndex):
return QueryDocumentsResponse(chunks=chunks, scores=scores)
async def delete(self, chunk_ids: List[str]) -> None:
collection = self.client.collections.get(self.collection_name)
collection.data.delete_many(
where=Filter.by_property("id").contains_any(chunk_ids)
)
class WeaviateMemoryAdapter(
Memory, NeedsRequestProviderData, MemoryBanksProtocolPrivate
Memory,
NeedsRequestProviderData,
MemoryBanksProtocolPrivate,
):
def __init__(self, config: WeaviateConfig) -> None:
def __init__(self, config: WeaviateConfig, inference_api: Api.inference) -> None:
self.config = config
self.inference_api = inference_api
self.client_cache = {}
self.cache = {}
@ -117,7 +127,7 @@ class WeaviateMemoryAdapter(
memory_bank: MemoryBank,
) -> None:
assert (
memory_bank.memory_bank_type == MemoryBankType.vector
memory_bank.memory_bank_type == MemoryBankType.vector.value
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
client = self._get_client()
@ -135,11 +145,11 @@ class WeaviateMemoryAdapter(
],
)
index = BankWithIndex(
bank=memory_bank,
index=WeaviateIndex(client=client, collection_name=memory_bank.identifier),
self.cache[memory_bank.identifier] = BankWithIndex(
memory_bank,
WeaviateIndex(client=client, collection_name=memory_bank.identifier),
self.inference_api,
)
self.cache[memory_bank.identifier] = index
async def _get_and_cache_bank_index(self, bank_id: str) -> Optional[BankWithIndex]:
if bank_id in self.cache:
@ -156,6 +166,7 @@ class WeaviateMemoryAdapter(
index = BankWithIndex(
bank=bank,
index=WeaviateIndex(client=client, collection_name=bank_id),
inference_api=self.inference_api,
)
self.cache[bank_id] = index
return index

View file

@ -18,6 +18,12 @@ def pytest_addoption(parser):
default=None,
help="Specify the inference model to use for testing",
)
parser.addoption(
"--embedding-model",
action="store",
default=None,
help="Specify the embedding model to use for testing",
)
def pytest_configure(config):

View file

@ -9,9 +9,9 @@ import os
import pytest
import pytest_asyncio
from llama_stack.apis.models import ModelInput
from llama_stack.apis.models import ModelInput, ModelType
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.inline.inference.meta_reference import (
MetaReferenceInferenceConfig,
)
@ -47,6 +47,9 @@ def inference_meta_reference(inference_model) -> ProviderFixture:
inference_model = (
[inference_model] if isinstance(inference_model, str) else inference_model
)
# If embedding dimension is set, use the 8B model for testing
if os.getenv("EMBEDDING_DIMENSION"):
inference_model = ["meta-llama/Llama-3.1-8B-Instruct"]
return ProviderFixture(
providers=[
@ -85,7 +88,7 @@ def inference_ollama(inference_model) -> ProviderFixture:
inference_model = (
[inference_model] if isinstance(inference_model, str) else inference_model
)
if "Llama3.1-8B-Instruct" in inference_model:
if inference_model and "Llama3.1-8B-Instruct" in inference_model:
pytest.skip("Ollama only supports Llama3.2-3B-Instruct for testing")
return ProviderFixture(
@ -232,11 +235,23 @@ INFERENCE_FIXTURES = [
async def inference_stack(request, inference_model):
fixture_name = request.param
inference_fixture = request.getfixturevalue(f"inference_{fixture_name}")
model_type = ModelType.llm
metadata = {}
if os.getenv("EMBEDDING_DIMENSION"):
model_type = ModelType.embedding_model
metadata["embedding_dimension"] = get_env_or_fail("EMBEDDING_DIMENSION")
test_stack = await construct_stack_for_test(
[Api.inference],
{"inference": inference_fixture.providers},
inference_fixture.provider_data,
models=[ModelInput(model_id=inference_model)],
models=[
ModelInput(
model_id=inference_model,
model_type=model_type,
metadata=metadata,
)
],
)
return test_stack.impls[Api.inference], test_stack.impls[Api.models]

View file

@ -0,0 +1,62 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from llama_stack.apis.inference import EmbeddingsResponse, ModelType
# How to run this test:
# pytest -v -s llama_stack/providers/tests/inference/test_embeddings.py
class TestEmbeddings:
@pytest.mark.asyncio
async def test_embeddings(self, inference_model, inference_stack):
inference_impl, models_impl = inference_stack
model = await models_impl.get_model(inference_model)
if model.model_type != ModelType.embedding_model:
pytest.skip("This test is only applicable for embedding models")
response = await inference_impl.embeddings(
model_id=inference_model,
contents=["Hello, world!"],
)
assert isinstance(response, EmbeddingsResponse)
assert len(response.embeddings) > 0
assert all(isinstance(embedding, list) for embedding in response.embeddings)
assert all(
isinstance(value, float)
for embedding in response.embeddings
for value in embedding
)
@pytest.mark.asyncio
async def test_batch_embeddings(self, inference_model, inference_stack):
inference_impl, models_impl = inference_stack
model = await models_impl.get_model(inference_model)
if model.model_type != ModelType.embedding_model:
pytest.skip("This test is only applicable for embedding models")
texts = ["Hello, world!", "This is a test", "Testing embeddings"]
response = await inference_impl.embeddings(
model_id=inference_model,
contents=texts,
)
assert isinstance(response, EmbeddingsResponse)
assert len(response.embeddings) == len(texts)
assert all(isinstance(embedding, list) for embedding in response.embeddings)
assert all(
isinstance(value, float)
for embedding in response.embeddings
for value in embedding
)
embedding_dim = len(response.embeddings[0])
assert all(len(embedding) == embedding_dim for embedding in response.embeddings)

View file

@ -6,9 +6,65 @@
import pytest
from ..conftest import get_provider_fixture_overrides
from ..inference.fixtures import INFERENCE_FIXTURES
from .fixtures import MEMORY_FIXTURES
DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param(
{
"inference": "meta_reference",
"memory": "faiss",
},
id="meta_reference",
marks=pytest.mark.meta_reference,
),
pytest.param(
{
"inference": "ollama",
"memory": "pgvector",
},
id="ollama",
marks=pytest.mark.ollama,
),
pytest.param(
{
"inference": "together",
"memory": "chroma",
},
id="chroma",
marks=pytest.mark.chroma,
),
pytest.param(
{
"inference": "bedrock",
"memory": "qdrant",
},
id="qdrant",
marks=pytest.mark.qdrant,
),
pytest.param(
{
"inference": "fireworks",
"memory": "weaviate",
},
id="weaviate",
marks=pytest.mark.weaviate,
),
]
def pytest_addoption(parser):
parser.addoption(
"--embedding-model",
action="store",
default=None,
help="Specify the embedding model to use for testing",
)
def pytest_configure(config):
for fixture_name in MEMORY_FIXTURES:
config.addinivalue_line(
@ -18,12 +74,22 @@ def pytest_configure(config):
def pytest_generate_tests(metafunc):
if "embedding_model" in metafunc.fixturenames:
model = metafunc.config.getoption("--embedding-model")
if not model:
raise ValueError(
"No embedding model specified. Please provide a valid embedding model."
)
params = [pytest.param(model, id="")]
metafunc.parametrize("embedding_model", params, indirect=True)
if "memory_stack" in metafunc.fixturenames:
metafunc.parametrize(
"memory_stack",
[
pytest.param(fixture_name, marks=getattr(pytest.mark, fixture_name))
for fixture_name in MEMORY_FIXTURES
],
indirect=True,
available_fixtures = {
"inference": INFERENCE_FIXTURES,
"memory": MEMORY_FIXTURES,
}
combinations = (
get_provider_fixture_overrides(metafunc.config, available_fixtures)
or DEFAULT_PROVIDER_COMBINATIONS
)
metafunc.parametrize("memory_stack", combinations, indirect=True)

View file

@ -10,6 +10,8 @@ import tempfile
import pytest
import pytest_asyncio
from llama_stack.apis.inference import ModelInput, ModelType
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.inline.memory.chroma import ChromaInlineImplConfig
from llama_stack.providers.inline.memory.faiss import FaissImplConfig
@ -105,14 +107,30 @@ MEMORY_FIXTURES = ["faiss", "pgvector", "weaviate", "remote", "chroma"]
@pytest_asyncio.fixture(scope="session")
async def memory_stack(request):
fixture_name = request.param
fixture = request.getfixturevalue(f"memory_{fixture_name}")
async def memory_stack(embedding_model, request):
fixture_dict = request.param
providers = {}
provider_data = {}
for key in ["inference", "memory"]:
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
providers[key] = fixture.providers
if fixture.provider_data:
provider_data.update(fixture.provider_data)
test_stack = await construct_stack_for_test(
[Api.memory],
{"memory": fixture.providers},
fixture.provider_data,
[Api.memory, Api.inference],
providers,
provider_data,
models=[
ModelInput(
model_id=embedding_model,
model_type=ModelType.embedding_model,
metadata={
"embedding_dimension": get_env_or_fail("EMBEDDING_DIMENSION"),
},
)
],
)
return test_stack.impls[Api.memory], test_stack.impls[Api.memory_banks]

View file

@ -45,12 +45,14 @@ def sample_documents():
]
async def register_memory_bank(banks_impl: MemoryBanks) -> MemoryBank:
async def register_memory_bank(
banks_impl: MemoryBanks, embedding_model: str
) -> MemoryBank:
bank_id = f"test_bank_{uuid.uuid4().hex}"
return await banks_impl.register_memory_bank(
memory_bank_id=bank_id,
params=VectorMemoryBankParams(
embedding_model="all-MiniLM-L6-v2",
embedding_model=embedding_model,
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
@ -59,11 +61,11 @@ async def register_memory_bank(banks_impl: MemoryBanks) -> MemoryBank:
class TestMemory:
@pytest.mark.asyncio
async def test_banks_list(self, memory_stack):
async def test_banks_list(self, memory_stack, embedding_model):
_, banks_impl = memory_stack
# Register a test bank
registered_bank = await register_memory_bank(banks_impl)
registered_bank = await register_memory_bank(banks_impl, embedding_model)
try:
# Verify our bank shows up in list
@ -84,7 +86,7 @@ class TestMemory:
)
@pytest.mark.asyncio
async def test_banks_register(self, memory_stack):
async def test_banks_register(self, memory_stack, embedding_model):
_, banks_impl = memory_stack
bank_id = f"test_bank_{uuid.uuid4().hex}"
@ -94,7 +96,7 @@ class TestMemory:
await banks_impl.register_memory_bank(
memory_bank_id=bank_id,
params=VectorMemoryBankParams(
embedding_model="all-MiniLM-L6-v2",
embedding_model=embedding_model,
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
@ -109,7 +111,7 @@ class TestMemory:
await banks_impl.register_memory_bank(
memory_bank_id=bank_id,
params=VectorMemoryBankParams(
embedding_model="all-MiniLM-L6-v2",
embedding_model=embedding_model,
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
@ -126,13 +128,15 @@ class TestMemory:
await banks_impl.unregister_memory_bank(bank_id)
@pytest.mark.asyncio
async def test_query_documents(self, memory_stack, sample_documents):
async def test_query_documents(
self, memory_stack, embedding_model, sample_documents
):
memory_impl, banks_impl = memory_stack
with pytest.raises(ValueError):
await memory_impl.insert_documents("test_bank", sample_documents)
registered_bank = await register_memory_bank(banks_impl)
registered_bank = await register_memory_bank(banks_impl, embedding_model)
await memory_impl.insert_documents(
registered_bank.memory_bank_id, sample_documents
)
@ -165,13 +169,13 @@ class TestMemory:
# Test case 5: Query with threshold on similarity score
query5 = "quantum computing" # Not directly related to any document
params5 = {"score_threshold": 0.2}
params5 = {"score_threshold": 0.01}
response5 = await memory_impl.query_documents(
registered_bank.memory_bank_id, query5, params5
)
assert_valid_response(response5)
print("The scores are:", response5.scores)
assert all(score >= 0.2 for score in response5.scores)
assert all(score >= 0.01 for score in response5.scores)
def assert_valid_response(response: QueryDocumentsResponse):

View file

@ -0,0 +1,47 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
from typing import List
from llama_models.llama3.api.datatypes import InterleavedTextMedia
from llama_stack.apis.inference.inference import EmbeddingsResponse, ModelStore
EMBEDDING_MODELS = {}
log = logging.getLogger(__name__)
class SentenceTransformerEmbeddingMixin:
model_store: ModelStore
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
model = await self.model_store.get_model(model_id)
embedding_model = self._load_sentence_transformer_model(
model.provider_resource_id
)
embeddings = embedding_model.encode(contents)
return EmbeddingsResponse(embeddings=embeddings)
def _load_sentence_transformer_model(self, model: str) -> "SentenceTransformer":
global EMBEDDING_MODELS
loaded_model = EMBEDDING_MODELS.get(model)
if loaded_model is not None:
return loaded_model
log.info(f"Loading sentence transformer for {model}...")
from sentence_transformers import SentenceTransformer
loaded_model = SentenceTransformer(model)
EMBEDDING_MODELS[model] = loaded_model
return loaded_model

View file

@ -22,28 +22,10 @@ from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.providers.datatypes import Api
log = logging.getLogger(__name__)
ALL_MINILM_L6_V2_DIMENSION = 384
EMBEDDING_MODELS = {}
def get_embedding_model(model: str) -> "SentenceTransformer":
global EMBEDDING_MODELS
loaded_model = EMBEDDING_MODELS.get(model)
if loaded_model is not None:
return loaded_model
log.info(f"Loading sentence transformer for {model}...")
from sentence_transformers import SentenceTransformer
loaded_model = SentenceTransformer(model)
EMBEDDING_MODELS[model] = loaded_model
return loaded_model
def parse_pdf(data: bytes) -> str:
# For PDF and DOC/DOCX files, we can't reliably convert to string
@ -166,12 +148,12 @@ class EmbeddingIndex(ABC):
class BankWithIndex:
bank: VectorMemoryBank
index: EmbeddingIndex
inference_api: Api.inference
async def insert_documents(
self,
documents: List[MemoryBankDocument],
) -> None:
model = get_embedding_model(self.bank.embedding_model)
for doc in documents:
content = await content_from_doc(doc)
chunks = make_overlapped_chunks(
@ -183,7 +165,10 @@ class BankWithIndex:
)
if not chunks:
continue
embeddings = model.encode([x.content for x in chunks]).astype(np.float32)
embeddings_response = await self.inference_api.embeddings(
self.bank.embedding_model, [x.content for x in chunks]
)
embeddings = np.array(embeddings_response.embeddings)
await self.index.add_chunks(chunks, embeddings)
@ -208,6 +193,8 @@ class BankWithIndex:
else:
query_str = _process(query)
model = get_embedding_model(self.bank.embedding_model)
query_vector = model.encode([query_str])[0].astype(np.float32)
embeddings_response = await self.inference_api.embeddings(
self.bank.embedding_model, [query_str]
)
query_vector = np.array(embeddings_response.embeddings[0], dtype=np.float32)
return await self.index.query(query_vector, k, score_threshold)