llama-stack-mirror/llama_stack/apis/models/models.py
Dinesh Yeduguru d362d2d740 implement embedding generation in supported inference providers (#589)
This PR adds the ability to generate embeddings in all supported
inference providers.

```
pytest -v -s llama_stack/providers/tests/inference/test_embeddings.py -k "bedrock" --inference-model="amazon.titan-embed-text-v2:0"  --env EMBEDDING_DIMENSION=1024

 pytest -v -s -k "vllm"  --inferrence-model="intfloat/e5-mistral-7b-instruct"  llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=4096  --env VLLM_URL="http://localhost:9798/v1"

pytest -v -s --inference-model="nomic-ai/nomic-embed-text-v1.5"  llama_stack/providers/tests/inference/test_embeddings.py  -k "fireworks"  --env FIREWORKS_API_KEY=<API_KEY>--env EMBEDDING_DIMENSION=128

pytest -v -s --inference-model="togethercomputer/m2-bert-80M-2k-retrieval"  llama_stack/providers/tests/inference/test_embeddings.py  -k "together"  --env TOGETHER_API_KEY=<API_KEY>--env EMBEDDING_DIMENSION=768

pytest -v -s -k "ollama"  --inference-model="all-minilm:v8"  llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=384

 torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="sentence-transformers/all-MiniLM-L6-v2"  llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=384

```
2024-12-12 11:25:09 -08:00

74 lines
2.2 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Protocol, runtime_checkable
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, ConfigDict, Field
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
class CommonModelFields(BaseModel):
metadata: Dict[str, Any] = Field(
default_factory=dict,
description="Any additional metadata for this model",
)
class ModelType(Enum):
llm = "llm"
embedding_model = "embedding"
@json_schema_type
class Model(CommonModelFields, Resource):
type: Literal[ResourceType.model.value] = ResourceType.model.value
@property
def model_id(self) -> str:
return self.identifier
@property
def provider_model_id(self) -> str:
return self.provider_resource_id
model_config = ConfigDict(protected_namespaces=())
model_type: ModelType = Field(default=ModelType.llm)
class ModelInput(CommonModelFields):
model_id: str
provider_id: Optional[str] = None
provider_model_id: Optional[str] = None
model_type: Optional[ModelType] = ModelType.llm
model_config = ConfigDict(protected_namespaces=())
@runtime_checkable
@trace_protocol
class Models(Protocol):
@webmethod(route="/models/list", method="GET")
async def list_models(self) -> List[Model]: ...
@webmethod(route="/models/get", method="GET")
async def get_model(self, identifier: str) -> Optional[Model]: ...
@webmethod(route="/models/register", method="POST")
async def register_model(
self,
model_id: str,
provider_model_id: Optional[str] = None,
provider_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
model_type: Optional[ModelType] = None,
) -> Model: ...
@webmethod(route="/models/unregister", method="POST")
async def unregister_model(self, model_id: str) -> None: ...