refactor: use extra_body to pass in input_type params for asymmetric embedding models for NVIDIA Inference Provider (#3804)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Test Llama Stack Build / generate-matrix (push) Successful in 4s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 2s
Test Llama Stack Build / build-single-provider (push) Failing after 4s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Test External API and Providers / test-external (venv) (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 5s
Test Llama Stack Build / build (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 5s
Vector IO Integration Tests / test-matrix (push) Failing after 9s
API Conformance Tests / check-schema-compatibility (push) Successful in 16s
UI Tests / ui-tests (22) (push) Successful in 33s
Pre-commit / pre-commit (push) Successful in 1m33s

# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
Previously, the NVIDIA inference provider implemented a custom
`openai_embeddings` method with a hardcoded `input_type="query"`
parameter, which is required by NVIDIA asymmetric embedding
models([https://github.com/llamastack/llama-stack/pull/3205](https://github.com/llamastack/llama-stack/pull/3205)).
Recently `extra_body` parameter is added to the embeddings API
([https://github.com/llamastack/llama-stack/pull/3794](https://github.com/llamastack/llama-stack/pull/3794)).
So, this PR updates the NVIDIA inference provider to use the base
`OpenAIMixin.openai_embeddings` method instead and pass the `input_type`
through the `extra_body` parameter for asymmetric embedding models.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Run the following command for the ```embedding_model```:
```nvidia/llama-3.2-nv-embedqa-1b-v2```, ```nvidia/nv-embedqa-e5-v5```,
```nvidia/nv-embedqa-mistral-7b-v2```, and
```snowflake/arctic-embed-l```.
```
pytest -s -v tests/integration/inference/test_openai_embeddings.py --stack-config="inference=nvidia" --embedding-model={embedding_model} --env NVIDIA_API_KEY={nvidia_api_key} --env NVIDIA_BASE_URL="https://integrate.api.nvidia.com" --inference-mode=record
```
This commit is contained in:
Jiayi Ni 2025-10-14 13:52:55 -07:00 committed by GitHub
parent 866c13cdc2
commit d875e427bf
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 75 additions and 70 deletions

View file

@ -139,16 +139,13 @@ print(f"Structured Response: {structured_response.choices[0].message.content}")
The following example shows how to create embeddings for an NVIDIA NIM.
> [!NOTE]
> NVIDIA asymmetric embedding models (e.g., `nvidia/llama-3.2-nv-embedqa-1b-v2`) require an `input_type` parameter not present in the standard OpenAI embeddings API. The NVIDIA Inference Adapter automatically sets `input_type="query"` when using the OpenAI-compatible embeddings endpoint for NVIDIA. For passage embeddings, use the `embeddings` API with `task_type="document"`.
```python
response = client.inference.embeddings(
model_id="nvidia/llama-3.2-nv-embedqa-1b-v2",
contents=["What is the capital of France?"],
task_type="query",
response = client.embeddings.create(
model="nvidia/llama-3.2-nv-embedqa-1b-v2",
input=["What is the capital of France?"],
extra_body={"input_type": "query"},
)
print(f"Embeddings: {response.embeddings}")
print(f"Embeddings: {response.data}")
```
### Vision Language Models Example

View file

@ -5,14 +5,6 @@
# the root directory of this source tree.
from openai import NOT_GIVEN
from llama_stack.apis.inference import (
OpenAIEmbeddingData,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
)
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
@ -76,50 +68,3 @@ class NVIDIAInferenceAdapter(OpenAIMixin):
:return: The NVIDIA API base URL
"""
return f"{self.config.url}/v1" if self.config.append_api_version else self.config.url
async def openai_embeddings(
self,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
"""
OpenAI-compatible embeddings for NVIDIA NIM.
Note: NVIDIA NIM asymmetric embedding models require an "input_type" field not present in the standard OpenAI embeddings API.
We default this to "query" to ensure requests succeed when using the
OpenAI-compatible endpoint. For passage embeddings, use the embeddings API with
`task_type='document'`.
"""
extra_body: dict[str, object] = {"input_type": "query"}
logger.warning(
"NVIDIA OpenAI-compatible embeddings: defaulting to input_type='query'. "
"For passage embeddings, use the embeddings API with task_type='document'."
)
response = await self.client.embeddings.create(
model=await self._get_provider_model_id(params.model),
input=params.input,
encoding_format=params.encoding_format if params.encoding_format is not None else NOT_GIVEN,
dimensions=params.dimensions if params.dimensions is not None else NOT_GIVEN,
user=params.user if params.user is not None else NOT_GIVEN,
extra_body=extra_body,
)
data = []
for i, embedding_data in enumerate(response.data):
data.append(
OpenAIEmbeddingData(
embedding=embedding_data.embedding,
index=i,
)
)
usage = OpenAIEmbeddingUsage(
prompt_tokens=response.usage.prompt_tokens,
total_tokens=response.usage.total_tokens,
)
return OpenAIEmbeddingsResponse(
data=data,
model=response.model,
usage=usage,
)

View file

@ -12,6 +12,15 @@ from openai import OpenAI
from llama_stack.core.library_client import LlamaStackAsLibraryClient
ASYMMETRIC_EMBEDDING_MODELS_BY_PROVIDER = {
"remote::nvidia": [
"nvidia/llama-3.2-nv-embedqa-1b-v2",
"nvidia/nv-embedqa-e5-v5",
"nvidia/nv-embedqa-mistral-7b-v2",
"snowflake/arctic-embed-l",
],
}
def decode_base64_to_floats(base64_string: str) -> list[float]:
"""Helper function to decode base64 string to list of float32 values."""
@ -29,6 +38,28 @@ def provider_from_model(client_with_models, model_id):
return providers[provider_id]
def is_asymmetric_model(client_with_models, model_id):
provider = provider_from_model(client_with_models, model_id)
provider_type = provider.provider_type
if provider_type not in ASYMMETRIC_EMBEDDING_MODELS_BY_PROVIDER:
return False
return model_id in ASYMMETRIC_EMBEDDING_MODELS_BY_PROVIDER[provider_type]
def get_extra_body_for_model(client_with_models, model_id, input_type="query"):
if not is_asymmetric_model(client_with_models, model_id):
return None
provider = provider_from_model(client_with_models, model_id)
if provider.provider_type == "remote::nvidia":
return {"input_type": input_type}
return None
def skip_if_model_doesnt_support_user_param(client, model_id):
provider = provider_from_model(client, model_id)
if provider.provider_type in (
@ -40,17 +71,29 @@ def skip_if_model_doesnt_support_user_param(client, model_id):
def skip_if_model_doesnt_support_encoding_format_base64(client, model_id):
provider = provider_from_model(client, model_id)
if provider.provider_type in (
should_skip = provider.provider_type in (
"remote::databricks", # param silently ignored, always returns floats
"remote::fireworks", # param silently ignored, always returns list of floats
"remote::ollama", # param silently ignored, always returns list of floats
):
) or (
provider.provider_type == "remote::nvidia"
and model_id
in [
"nvidia/nv-embedqa-e5-v5",
"nvidia/nv-embedqa-mistral-7b-v2",
"snowflake/arctic-embed-l",
]
)
if should_skip:
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} does not support encoding_format='base64'.")
def skip_if_model_doesnt_support_variable_dimensions(client_with_models, model_id):
provider = provider_from_model(client_with_models, model_id)
if (
should_skip = (
provider.provider_type
in (
"remote::together", # returns 400
@ -59,11 +102,19 @@ def skip_if_model_doesnt_support_variable_dimensions(client_with_models, model_i
"remote::databricks",
"remote::watsonx", # openai.BadRequestError: Error code: 400 - {'detail': "litellm.UnsupportedParamsError: watsonx does not support parameters: {'dimensions': 384}
)
):
pytest.skip(
f"Model {model_id} hosted by {provider.provider_type} does not support variable output embedding dimensions."
or (provider.provider_type == "remote::openai" and "text-embedding-3" not in model_id)
or (
provider.provider_type == "remote::nvidia"
and model_id
in [
"nvidia/nv-embedqa-e5-v5",
"nvidia/nv-embedqa-mistral-7b-v2",
"snowflake/arctic-embed-l",
]
)
if provider.provider_type == "remote::openai" and "text-embedding-3" not in model_id:
)
if should_skip:
pytest.skip(
f"Model {model_id} hosted by {provider.provider_type} does not support variable output embedding dimensions."
)
@ -105,6 +156,7 @@ def test_openai_embeddings_single_string(compat_client, client_with_models, embe
model=embedding_model_id,
input=input_text,
encoding_format="float",
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
)
assert response.object == "list"
@ -129,6 +181,7 @@ def test_openai_embeddings_multiple_strings(compat_client, client_with_models, e
model=embedding_model_id,
input=input_texts,
encoding_format="float",
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
)
assert response.object == "list"
@ -155,6 +208,7 @@ def test_openai_embeddings_with_encoding_format_float(compat_client, client_with
model=embedding_model_id,
input=input_text,
encoding_format="float",
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
)
assert response.object == "list"
@ -175,6 +229,7 @@ def test_openai_embeddings_with_dimensions(compat_client, client_with_models, em
model=embedding_model_id,
input=input_text,
dimensions=dimensions,
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
)
assert response.object == "list"
@ -196,6 +251,7 @@ def test_openai_embeddings_with_user_parameter(compat_client, client_with_models
model=embedding_model_id,
input=input_text,
user=user_id,
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
)
assert response.object == "list"
@ -212,6 +268,7 @@ def test_openai_embeddings_empty_list_error(compat_client, client_with_models, e
compat_client.embeddings.create(
model=embedding_model_id,
input=[],
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
)
@ -223,6 +280,7 @@ def test_openai_embeddings_invalid_model_error(compat_client, client_with_models
compat_client.embeddings.create(
model="invalid-model-id",
input="Test text",
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
)
@ -233,16 +291,19 @@ def test_openai_embeddings_different_inputs_different_outputs(compat_client, cli
input_text1 = "This is the first text"
input_text2 = "This is completely different content"
extra_body = get_extra_body_for_model(client_with_models, embedding_model_id)
response1 = compat_client.embeddings.create(
model=embedding_model_id,
input=input_text1,
encoding_format="float",
extra_body=extra_body,
)
response2 = compat_client.embeddings.create(
model=embedding_model_id,
input=input_text2,
encoding_format="float",
extra_body=extra_body,
)
embedding1 = response1.data[0].embedding
@ -267,6 +328,7 @@ def test_openai_embeddings_with_encoding_format_base64(compat_client, client_wit
input=input_text,
encoding_format="base64",
dimensions=dimensions,
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
)
# Validate response structure
@ -298,6 +360,7 @@ def test_openai_embeddings_base64_batch_processing(compat_client, client_with_mo
model=embedding_model_id,
input=input_texts,
encoding_format="base64",
extra_body=get_extra_body_for_model(client_with_models, embedding_model_id),
)
# Validate response structure
assert response.object == "list"