mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-16 06:53:47 +00:00
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Test Llama Stack Build / generate-matrix (push) Successful in 4s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 2s
Test Llama Stack Build / build-single-provider (push) Failing after 4s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Test External API and Providers / test-external (venv) (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 5s
Test Llama Stack Build / build (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 5s
Vector IO Integration Tests / test-matrix (push) Failing after 9s
API Conformance Tests / check-schema-compatibility (push) Successful in 16s
UI Tests / ui-tests (22) (push) Successful in 33s
Pre-commit / pre-commit (push) Successful in 1m33s
# What does this PR do? <!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. --> Previously, the NVIDIA inference provider implemented a custom `openai_embeddings` method with a hardcoded `input_type="query"` parameter, which is required by NVIDIA asymmetric embedding models([https://github.com/llamastack/llama-stack/pull/3205](https://github.com/llamastack/llama-stack/pull/3205)). Recently `extra_body` parameter is added to the embeddings API ([https://github.com/llamastack/llama-stack/pull/3794](https://github.com/llamastack/llama-stack/pull/3794)). So, this PR updates the NVIDIA inference provider to use the base `OpenAIMixin.openai_embeddings` method instead and pass the `input_type` through the `extra_body` parameter for asymmetric embedding models. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> ## Test Plan <!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* --> Run the following command for the ```embedding_model```: ```nvidia/llama-3.2-nv-embedqa-1b-v2```, ```nvidia/nv-embedqa-e5-v5```, ```nvidia/nv-embedqa-mistral-7b-v2```, and ```snowflake/arctic-embed-l```. ``` pytest -s -v tests/integration/inference/test_openai_embeddings.py --stack-config="inference=nvidia" --embedding-model={embedding_model} --env NVIDIA_API_KEY={nvidia_api_key} --env NVIDIA_BASE_URL="https://integrate.api.nvidia.com" --inference-mode=record ```
70 lines
2.6 KiB
Python
70 lines
2.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
from llama_stack.log import get_logger
|
|
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
|
|
|
from . import NVIDIAConfig
|
|
from .utils import _is_nvidia_hosted
|
|
|
|
logger = get_logger(name=__name__, category="inference::nvidia")
|
|
|
|
|
|
class NVIDIAInferenceAdapter(OpenAIMixin):
|
|
config: NVIDIAConfig
|
|
|
|
"""
|
|
NVIDIA Inference Adapter for Llama Stack.
|
|
|
|
Note: The inheritance order is important here. OpenAIMixin must come before
|
|
ModelRegistryHelper to ensure that OpenAIMixin.check_model_availability()
|
|
is used instead of ModelRegistryHelper.check_model_availability(). It also
|
|
must come before Inference to ensure that OpenAIMixin methods are available
|
|
in the Inference interface.
|
|
|
|
- OpenAIMixin.check_model_availability() queries the NVIDIA API to check if a model exists
|
|
- ModelRegistryHelper.check_model_availability() just returns False and shows a warning
|
|
"""
|
|
|
|
# source: https://docs.nvidia.com/nim/nemo-retriever/text-embedding/latest/support-matrix.html
|
|
embedding_model_metadata: dict[str, dict[str, int]] = {
|
|
"nvidia/llama-3.2-nv-embedqa-1b-v2": {"embedding_dimension": 2048, "context_length": 8192},
|
|
"nvidia/nv-embedqa-e5-v5": {"embedding_dimension": 512, "context_length": 1024},
|
|
"nvidia/nv-embedqa-mistral-7b-v2": {"embedding_dimension": 512, "context_length": 4096},
|
|
"snowflake/arctic-embed-l": {"embedding_dimension": 512, "context_length": 1024},
|
|
}
|
|
|
|
async def initialize(self) -> None:
|
|
logger.info(f"Initializing NVIDIAInferenceAdapter({self.config.url})...")
|
|
|
|
if _is_nvidia_hosted(self.config):
|
|
if not self.config.auth_credential:
|
|
raise RuntimeError(
|
|
"API key is required for hosted NVIDIA NIM. Either provide an API key or use a self-hosted NIM."
|
|
)
|
|
|
|
def get_api_key(self) -> str:
|
|
"""
|
|
Get the API key for OpenAI mixin.
|
|
|
|
:return: The NVIDIA API key
|
|
"""
|
|
if self.config.auth_credential:
|
|
return self.config.auth_credential.get_secret_value()
|
|
|
|
if not _is_nvidia_hosted(self.config):
|
|
return "NO KEY REQUIRED"
|
|
|
|
return None
|
|
|
|
def get_base_url(self) -> str:
|
|
"""
|
|
Get the base URL for OpenAI mixin.
|
|
|
|
:return: The NVIDIA API base URL
|
|
"""
|
|
return f"{self.config.url}/v1" if self.config.append_api_version else self.config.url
|