This commit is contained in:
Varsha 2025-06-27 09:47:33 +01:00 committed by GitHub
commit e9609c00e6
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
17 changed files with 245 additions and 137 deletions

View file

@ -11468,6 +11468,32 @@
"ttl_seconds": {
"type": "integer",
"description": "The time to live of the chunks."
},
"params": {
"type": "object",
"additionalProperties": {
"oneOf": [
{
"type": "null"
},
{
"type": "boolean"
},
{
"type": "number"
},
{
"type": "string"
},
{
"type": "array"
},
{
"type": "object"
}
]
},
"description": "Optional parameters for the insertion operation, such as distance_metric for vector databases."
}
},
"additionalProperties": false,

View file

@ -8095,6 +8095,19 @@ components:
ttl_seconds:
type: integer
description: The time to live of the chunks.
params:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
Optional parameters for the insertion operation, such as distance_metric
for vector databases.
additionalProperties: false
required:
- vector_db_id

View file

@ -306,6 +306,7 @@ class VectorIO(Protocol):
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
params: dict[str, Any] | None = None,
) -> None:
"""Insert chunks into a vector database.
@ -315,6 +316,7 @@ class VectorIO(Protocol):
If `metadata` is provided, you configure how Llama Stack formats the chunk during generation.
If `embedding` is not provided, it will be computed later.
:param ttl_seconds: The time to live of the chunks.
:param params: Optional parameters for the insertion operation, such as distance_metric for vector databases.
"""
...

View file

@ -97,11 +97,14 @@ class VectorIORouter(VectorIO):
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
params: dict[str, Any] | None = None,
) -> None:
logger.debug(
f"VectorIORouter.insert_chunks: {vector_db_id}, {len(chunks)} chunks, ttl_seconds={ttl_seconds}, chunk_ids={[chunk.metadata['document_id'] for chunk in chunks[:3]]}{' and more...' if len(chunks) > 3 else ''}",
)
return await self.routing_table.get_provider_impl(vector_db_id).insert_chunks(vector_db_id, chunks, ttl_seconds)
return await self.routing_table.get_provider_impl(vector_db_id).insert_chunks(
vector_db_id, chunks, ttl_seconds, params
)
async def query_chunks(
self,

View file

@ -96,7 +96,7 @@ class FaissIndex(EmbeddingIndex):
await self.kvstore.delete(f"{FAISS_INDEX_PREFIX}{self.bank_id}")
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray, metadata: dict[str, Any] | None = None):
# Add dimension check
embedding_dim = embeddings.shape[1] if len(embeddings.shape) > 1 else embeddings.shape[0]
if embedding_dim != self.index.d:
@ -234,6 +234,7 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
params: dict[str, Any] | None = None,
) -> None:
index = self.cache.get(vector_db_id)
if index is None:

View file

@ -4,14 +4,18 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.datatypes import Api, ProviderSpec
from typing import Any
from llama_stack.providers.datatypes import Api
from .config import QdrantVectorIOConfig
async def get_adapter_impl(config: QdrantVectorIOConfig, deps: dict[Api, ProviderSpec]):
async def get_provider_impl(config: QdrantVectorIOConfig, deps: dict[Api, Any]):
from llama_stack.providers.remote.vector_io.qdrant.qdrant import QdrantVectorIOAdapter
impl = QdrantVectorIOAdapter(config, deps[Api.inference])
assert isinstance(config, QdrantVectorIOConfig), f"Unexpected config type: {type(config)}"
files_api = deps.get(Api.files)
impl = QdrantVectorIOAdapter(config, deps[Api.inference], files_api)
await impl.initialize()
return impl

View file

@ -9,15 +9,24 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class QdrantVectorIOConfig(BaseModel):
path: str
kvstore: KVStoreConfig
@classmethod
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
return {
"path": "${env.QDRANT_PATH:=~/.llama/" + __distro_dir__ + "}/" + "qdrant.db",
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="qdrant_store.db",
),
}

View file

@ -178,7 +178,9 @@ class SQLiteVecIndex(EmbeddingIndex):
await asyncio.to_thread(_drop_tables)
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray, batch_size: int = 500):
async def add_chunks(
self, chunks: list[Chunk], embeddings: NDArray, metadata: dict[str, Any] | None = None, batch_size: int = 500
):
"""
Add new chunks along with their embeddings using batch inserts.
For each chunk, we insert its JSON into the metadata table and then insert its
@ -729,7 +731,13 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
await asyncio.to_thread(_delete)
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
async def insert_chunks(
self,
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
params: dict[str, Any] | None = None,
) -> None:
if vector_db_id not in self.cache:
raise ValueError(f"Vector DB {vector_db_id} not found. Found: {list(self.cache.keys())}")
# The VectorDBWithIndex helper is expected to compute embeddings via the inference_api

View file

@ -55,7 +55,7 @@ class ChromaIndex(EmbeddingIndex):
self.client = client
self.collection = collection
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray, metadata: dict[str, Any] | None = None):
assert len(chunks) == len(embeddings), (
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
)
@ -178,6 +178,7 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
params: dict[str, Any] | None = None,
) -> None:
index = await self._get_and_cache_vector_db_index(vector_db_id)

View file

@ -53,7 +53,7 @@ class MilvusIndex(EmbeddingIndex):
if await asyncio.to_thread(self.client.has_collection, self.collection_name):
await asyncio.to_thread(self.client.drop_collection, collection_name=self.collection_name)
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray, metadata: dict[str, Any] | None = None):
assert len(chunks) == len(embeddings), (
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
)
@ -183,6 +183,7 @@ class MilvusVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
params: dict[str, Any] | None = None,
) -> None:
index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index:

View file

@ -88,7 +88,7 @@ class PGVectorIndex(EmbeddingIndex):
"""
)
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray, metadata: dict[str, Any] | None = None):
assert len(chunks) == len(embeddings), (
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
)
@ -215,6 +215,7 @@ class PGVectorVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
params: dict[str, Any] | None = None,
) -> None:
index = await self._get_and_cache_vector_db_index(vector_db_id)
await index.insert_chunks(chunks)

View file

@ -8,6 +8,10 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from llama_stack.schema_utils import json_schema_type
@ -23,9 +27,14 @@ class QdrantVectorIOConfig(BaseModel):
prefix: str | None = None
timeout: int | None = None
host: str | None = None
kvstore: KVStoreConfig
@classmethod
def sample_run_config(cls, **kwargs: Any) -> dict[str, Any]:
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {
"api_key": "${env.QDRANT_API_KEY}",
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="qdrant_store.db",
),
}

View file

@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import logging
import uuid
from typing import Any
@ -12,25 +13,18 @@ from numpy.typing import NDArray
from qdrant_client import AsyncQdrantClient, models
from qdrant_client.models import PointStruct
from llama_stack.apis.files import Files
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
Chunk,
QueryChunksResponse,
SearchRankingOptions,
VectorIO,
VectorStoreChunkingStrategy,
VectorStoreDeleteResponse,
VectorStoreFileContentsResponse,
VectorStoreFileObject,
VectorStoreFileStatus,
VectorStoreListFilesResponse,
VectorStoreListResponse,
VectorStoreObject,
VectorStoreSearchResponsePage,
)
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig
from llama_stack.providers.utils.kvstore import KVStore, kvstore_impl
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
EmbeddingIndex,
VectorDBWithIndex,
@ -41,6 +35,13 @@ from .config import QdrantVectorIOConfig as RemoteQdrantVectorIOConfig
log = logging.getLogger(__name__)
CHUNK_ID_KEY = "_chunk_id"
# KV store prefixes for OpenAI vector stores
OPENAI_VECTOR_STORES_PREFIX = "openai_vector_stores:"
OPENAI_VECTOR_STORES_FILES_PREFIX = "openai_vector_stores_files:"
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = "openai_vector_stores_files_contents:"
VECTOR_DBS_PREFIX = "vector_dbs:"
def convert_id(_id: str) -> str:
"""
@ -57,17 +58,38 @@ class QdrantIndex(EmbeddingIndex):
def __init__(self, client: AsyncQdrantClient, collection_name: str):
self.client = client
self.collection_name = collection_name
self._distance_metric = None # Will be set when collection is created
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray, metadata: dict[str, Any] | None = None):
assert len(chunks) == len(embeddings), (
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
)
# Extract distance_metric from metadata if provided, default to COSINE
distance_metric = "COSINE" # Default
if metadata is not None and "distance_metric" in metadata:
distance_metric = metadata["distance_metric"]
if not await self.client.collection_exists(self.collection_name):
# Create collection with the specified distance metric
distance = getattr(models.Distance, distance_metric, models.Distance.COSINE)
self._distance_metric = distance_metric
await self.client.create_collection(
self.collection_name,
vectors_config=models.VectorParams(size=len(embeddings[0]), distance=models.Distance.COSINE),
vectors_config=models.VectorParams(size=len(embeddings[0]), distance=distance),
)
else:
# Collection already exists, warn if different distance metric was requested
if self._distance_metric is None:
# For now, assume COSINE as default since we can't easily extract it from collection info
self._distance_metric = "COSINE"
if self._distance_metric != distance_metric:
log.warning(
f"Collection {self.collection_name} was created with distance metric '{self._distance_metric}', "
f"but '{distance_metric}' was requested. Using existing distance metric."
)
points = []
for _i, (chunk, embedding) in enumerate(zip(chunks, embeddings, strict=False)):
@ -83,6 +105,7 @@ class QdrantIndex(EmbeddingIndex):
await self.client.upsert(collection_name=self.collection_name, points=points)
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
# Distance metric is set at collection creation and cannot be changed
results = (
await self.client.query_points(
collection_name=self.collection_name,
@ -132,21 +155,116 @@ class QdrantIndex(EmbeddingIndex):
await self.client.delete_collection(collection_name=self.collection_name)
class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
def __init__(
self, config: RemoteQdrantVectorIOConfig | InlineQdrantVectorIOConfig, inference_api: Api.inference
self,
config: RemoteQdrantVectorIOConfig | InlineQdrantVectorIOConfig,
inference_api: Api.inference,
files_api: Files | None,
) -> None:
self.config = config
self.client: AsyncQdrantClient = None
self.cache = {}
self.inference_api = inference_api
self.files_api = files_api
self.vector_db_store = None
self.kvstore: KVStore | None = None
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
async def initialize(self) -> None:
self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True))
self.kvstore = await kvstore_impl(self.config.kvstore)
# Load existing vector DBs from kvstore
start_key = VECTOR_DBS_PREFIX
end_key = f"{VECTOR_DBS_PREFIX}\xff"
stored_vector_dbs = await self.kvstore.values_in_range(start_key, end_key)
for vector_db_data in stored_vector_dbs:
vector_db = VectorDB.model_validate_json(vector_db_data)
index = VectorDBWithIndex(
vector_db,
QdrantIndex(self.client, vector_db.identifier),
self.inference_api,
)
self.cache[vector_db.identifier] = index
# Load OpenAI vector stores as before
self.openai_vector_stores = await self._load_openai_vector_stores()
async def shutdown(self) -> None:
await self.client.close()
# OpenAI Vector Store Mixin abstract method implementations
async def _save_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
"""Save vector store metadata to kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
await self.kvstore.set(key=key, value=json.dumps(store_info))
async def _load_openai_vector_stores(self) -> dict[str, dict[str, Any]]:
"""Load all vector store metadata from kvstore."""
assert self.kvstore is not None
start_key = OPENAI_VECTOR_STORES_PREFIX
end_key = f"{OPENAI_VECTOR_STORES_PREFIX}\xff"
stored_openai_stores = await self.kvstore.values_in_range(start_key, end_key)
stores = {}
for store_data in stored_openai_stores:
store_info = json.loads(store_data)
stores[store_info["id"]] = store_info
return stores
async def _update_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
"""Update vector store metadata in kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
await self.kvstore.set(key=key, value=json.dumps(store_info))
async def _delete_openai_vector_store_from_storage(self, store_id: str) -> None:
"""Delete vector store metadata from kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
await self.kvstore.delete(key)
async def _save_openai_vector_store_file(
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
) -> None:
"""Save vector store file metadata to kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
await self.kvstore.set(key=key, value=json.dumps(file_info))
content_key = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}"
await self.kvstore.set(key=content_key, value=json.dumps(file_contents))
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
"""Load vector store file metadata from kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
stored_data = await self.kvstore.get(key)
return json.loads(stored_data) if stored_data else {}
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
"""Load vector store file contents from kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}"
stored_data = await self.kvstore.get(key)
return json.loads(stored_data) if stored_data else []
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
"""Update vector store file metadata in kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
await self.kvstore.set(key=key, value=json.dumps(file_info))
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
"""Delete vector store file metadata from kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
await self.kvstore.delete(key)
content_key = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}"
await self.kvstore.delete(content_key)
async def register_vector_db(
self,
vector_db: VectorDB,
@ -185,12 +303,18 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
params: dict[str, Any] | None = None,
) -> None:
index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index:
raise ValueError(f"Vector DB {vector_db_id} not found")
await index.insert_chunks(chunks)
# Extract distance_metric from params if provided
distance_metric = None
if params is not None:
distance_metric = params.get("distance_metric")
await index.insert_chunks(chunks, distance_metric=distance_metric)
async def query_chunks(
self,
@ -203,108 +327,3 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
raise ValueError(f"Vector DB {vector_db_id} not found")
return await index.query_chunks(query, params)
async def openai_create_vector_store(
self,
name: str,
file_ids: list[str] | None = None,
expires_after: dict[str, Any] | None = None,
chunking_strategy: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
embedding_model: str | None = None,
embedding_dimension: int | None = 384,
provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorStoreObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_list_vector_stores(
self,
limit: int | None = 20,
order: str | None = "desc",
after: str | None = None,
before: str | None = None,
) -> VectorStoreListResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_retrieve_vector_store(
self,
vector_store_id: str,
) -> VectorStoreObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_update_vector_store(
self,
vector_store_id: str,
name: str | None = None,
expires_after: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
) -> VectorStoreObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_delete_vector_store(
self,
vector_store_id: str,
) -> VectorStoreDeleteResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_search_vector_store(
self,
vector_store_id: str,
query: str | list[str],
filters: dict[str, Any] | None = None,
max_num_results: int | None = 10,
ranking_options: SearchRankingOptions | None = None,
rewrite_query: bool | None = False,
search_mode: str | None = "vector",
) -> VectorStoreSearchResponsePage:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_list_files_in_vector_store(
self,
vector_store_id: str,
limit: int | None = 20,
order: str | None = "desc",
after: str | None = None,
before: str | None = None,
filter: VectorStoreFileStatus | None = None,
) -> VectorStoreListFilesResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_retrieve_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_retrieve_vector_store_file_contents(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileContentsResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_update_vector_store_file(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_delete_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")

View file

@ -33,7 +33,7 @@ class WeaviateIndex(EmbeddingIndex):
self.client = client
self.collection_name = collection_name
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray, metadata: dict[str, Any] | None = None):
assert len(chunks) == len(embeddings), (
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
)
@ -188,6 +188,7 @@ class WeaviateVectorIOAdapter(
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
params: dict[str, Any] | None = None,
) -> None:
index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index:

View file

@ -214,7 +214,7 @@ def _validate_embedding(embedding: NDArray, index: int, expected_dimension: int)
class EmbeddingIndex(ABC):
@abstractmethod
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray, metadata: dict[str, Any] | None = None):
raise NotImplementedError()
@abstractmethod
@ -251,6 +251,7 @@ class VectorDBWithIndex:
async def insert_chunks(
self,
chunks: list[Chunk],
distance_metric: str | None = None,
) -> None:
chunks_to_embed = []
for i, c in enumerate(chunks):
@ -271,7 +272,13 @@ class VectorDBWithIndex:
c.embedding = embedding
embeddings = np.array([c.embedding for c in chunks], dtype=np.float32)
await self.index.add_chunks(chunks, embeddings)
# Create metadata dict with distance_metric if provided
metadata = None
if distance_metric is not None:
metadata = {"distance_metric": distance_metric}
await self.index.add_chunks(chunks, embeddings, metadata=metadata)
async def query_chunks(
self,

View file

@ -22,7 +22,7 @@ logger = logging.getLogger(__name__)
def skip_if_provider_doesnt_support_openai_vector_stores(client_with_models):
vector_io_providers = [p for p in client_with_models.providers.list() if p.api == "vector_io"]
for p in vector_io_providers:
if p.provider_type in ["inline::faiss", "inline::sqlite-vec"]:
if p.provider_type in ["inline::faiss", "inline::sqlite-vec", "inline::qdrant"]:
return
pytest.skip("OpenAI vector stores are not supported by any provider")

View file

@ -24,6 +24,7 @@ from llama_stack.providers.inline.vector_io.qdrant.config import (
from llama_stack.providers.remote.vector_io.qdrant.qdrant import (
QdrantVectorIOAdapter,
)
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
# This test is a unit test for the QdrantVectorIOAdapter class. This should only contain
# tests which are specific to this class. More general (API-level) tests should be placed in
@ -37,7 +38,9 @@ from llama_stack.providers.remote.vector_io.qdrant.qdrant import (
@pytest.fixture
def qdrant_config(tmp_path) -> InlineQdrantVectorIOConfig:
return InlineQdrantVectorIOConfig(path=os.path.join(tmp_path, "qdrant.db"))
kvstore_config = SqliteKVStoreConfig(db_name=os.path.join(tmp_path, "test_kvstore.db"))
return InlineQdrantVectorIOConfig(path=os.path.join(tmp_path, "qdrant.db"), kvstore=kvstore_config)
@pytest.fixture(scope="session")
@ -70,7 +73,7 @@ def mock_api_service(sample_embeddings):
@pytest_asyncio.fixture
async def qdrant_adapter(qdrant_config, mock_vector_db_store, mock_api_service, loop) -> QdrantVectorIOAdapter:
adapter = QdrantVectorIOAdapter(config=qdrant_config, inference_api=mock_api_service)
adapter = QdrantVectorIOAdapter(config=qdrant_config, inference_api=mock_api_service, files_api=None)
adapter.vector_db_store = mock_vector_db_store
await adapter.initialize()
yield adapter