mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-02 08:44:44 +00:00
mmlu loose
This commit is contained in:
parent
6ee02ca23b
commit
edeb6dcf04
4 changed files with 46 additions and 59 deletions
|
@ -5,17 +5,17 @@
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
from llama_models.llama3.api.datatypes import URL
|
from llama_models.llama3.api.datatypes import URL
|
||||||
from llama_stack.apis.common.type_system import CompletionInputType, StringType
|
from llama_stack.apis.common.type_system import ChatCompletionInputType, StringType
|
||||||
from llama_stack.apis.datasetio import DatasetDef
|
from llama_stack.apis.datasetio import DatasetDef
|
||||||
|
|
||||||
|
|
||||||
llamastack_mmlu = DatasetDef(
|
llamastack_mmlu_loose = DatasetDef(
|
||||||
identifier="llamastack_mmlu",
|
identifier="llamastack_mmlu_loose",
|
||||||
url=URL(uri="https://huggingface.co/datasets/yanxi0830/ls-mmlu"),
|
url=URL(uri="https://huggingface.co/datasets/yanxi0830/ls-mmlu"),
|
||||||
dataset_schema={
|
dataset_schema={
|
||||||
"expected_answer": StringType(),
|
|
||||||
"input_query": StringType(),
|
"input_query": StringType(),
|
||||||
"chat_completion_input": CompletionInputType(),
|
"expected_answer": StringType(),
|
||||||
|
"chat_completion_input": ChatCompletionInputType(),
|
||||||
},
|
},
|
||||||
metadata={"path": "yanxi0830/ls-mmlu", "split": "train"},
|
metadata={"path": "yanxi0830/ls-mmlu", "split": "train"},
|
||||||
)
|
)
|
|
@ -13,11 +13,11 @@ from llama_stack.providers.datatypes import DatasetsProtocolPrivate
|
||||||
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
|
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
|
||||||
|
|
||||||
from .config import HuggingfaceDatasetIOConfig
|
from .config import HuggingfaceDatasetIOConfig
|
||||||
from .dataset_defs.llamastack_mmlu import llamastack_mmlu
|
from .dataset_defs.llamastack_mmlu_loose import llamastack_mmlu_loose
|
||||||
|
|
||||||
|
|
||||||
def load_hf_dataset(dataset_def: DatasetDef):
|
def load_hf_dataset(dataset_def: DatasetDef):
|
||||||
if dataset_def.metadata.get("dataset_path", None):
|
if dataset_def.metadata.get("path", None):
|
||||||
return load_dataset(**dataset_def.metadata)
|
return load_dataset(**dataset_def.metadata)
|
||||||
|
|
||||||
df = get_dataframe_from_url(dataset_def.url)
|
df = get_dataframe_from_url(dataset_def.url)
|
||||||
|
@ -37,7 +37,7 @@ class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
||||||
|
|
||||||
async def initialize(self) -> None:
|
async def initialize(self) -> None:
|
||||||
# pre-registered benchmark datasets
|
# pre-registered benchmark datasets
|
||||||
self.pre_registered_datasets = [llamastack_mmlu]
|
self.pre_registered_datasets = [llamastack_mmlu_loose]
|
||||||
self.dataset_infos = {x.identifier: x for x in self.pre_registered_datasets}
|
self.dataset_infos = {x.identifier: x for x in self.pre_registered_datasets}
|
||||||
|
|
||||||
async def shutdown(self) -> None: ...
|
async def shutdown(self) -> None: ...
|
||||||
|
@ -46,8 +46,6 @@ class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
||||||
self,
|
self,
|
||||||
dataset_def: DatasetDef,
|
dataset_def: DatasetDef,
|
||||||
) -> None:
|
) -> None:
|
||||||
|
|
||||||
print("registering dataset", dataset_def)
|
|
||||||
self.dataset_infos[dataset_def.identifier] = dataset_def
|
self.dataset_infos[dataset_def.identifier] = dataset_def
|
||||||
|
|
||||||
async def list_datasets(self) -> List[DatasetDef]:
|
async def list_datasets(self) -> List[DatasetDef]:
|
||||||
|
|
|
@ -54,7 +54,7 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
|
||||||
benchmark_tasks = [
|
benchmark_tasks = [
|
||||||
EvalTaskDef(
|
EvalTaskDef(
|
||||||
identifier="meta-reference-mmlu",
|
identifier="meta-reference-mmlu",
|
||||||
dataset_id="llamastack_mmlu",
|
dataset_id="llamastack_mmlu_loose",
|
||||||
scoring_functions=[
|
scoring_functions=[
|
||||||
"meta-reference::regex_parser_multiple_choice_answer"
|
"meta-reference::regex_parser_multiple_choice_answer"
|
||||||
],
|
],
|
||||||
|
|
|
@ -33,7 +33,6 @@ class Testeval:
|
||||||
_, eval_tasks_impl, _, _, _, _ = eval_stack
|
_, eval_tasks_impl, _, _, _, _ = eval_stack
|
||||||
response = await eval_tasks_impl.list_eval_tasks()
|
response = await eval_tasks_impl.list_eval_tasks()
|
||||||
assert isinstance(response, list)
|
assert isinstance(response, list)
|
||||||
assert len(response) == 0
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_eval_evaluate_rows(self, eval_stack):
|
async def test_eval_evaluate_rows(self, eval_stack):
|
||||||
|
@ -41,11 +40,6 @@ class Testeval:
|
||||||
await register_dataset(
|
await register_dataset(
|
||||||
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
||||||
)
|
)
|
||||||
provider = datasetio_impl.routing_table.get_provider_impl(
|
|
||||||
"test_dataset_for_eval"
|
|
||||||
)
|
|
||||||
# if provider.__provider_spec__.provider_type != "meta-reference":
|
|
||||||
# pytest.skip("Only meta-reference provider supports registering datasets")
|
|
||||||
|
|
||||||
response = await datasets_impl.list_datasets()
|
response = await datasets_impl.list_datasets()
|
||||||
assert len(response) >= 1
|
assert len(response) >= 1
|
||||||
|
@ -83,49 +77,44 @@ class Testeval:
|
||||||
assert "meta-reference::llm_as_judge_8b_correctness" in response.scores
|
assert "meta-reference::llm_as_judge_8b_correctness" in response.scores
|
||||||
assert "meta-reference::equality" in response.scores
|
assert "meta-reference::equality" in response.scores
|
||||||
|
|
||||||
# @pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
# async def test_eval_run_eval(self, eval_stack):
|
async def test_eval_run_eval(self, eval_stack):
|
||||||
# eval_impl, eval_tasks_impl, _, _, datasetio_impl, datasets_impl = eval_stack
|
eval_impl, eval_tasks_impl, _, _, datasetio_impl, datasets_impl = eval_stack
|
||||||
# await register_dataset(
|
await register_dataset(
|
||||||
# datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
||||||
# )
|
)
|
||||||
# provider = datasetio_impl.routing_table.get_provider_impl(
|
|
||||||
# "test_dataset_for_eval"
|
|
||||||
# )
|
|
||||||
# if provider.__provider_spec__.provider_type != "meta-reference":
|
|
||||||
# pytest.skip("Only meta-reference provider supports registering datasets")
|
|
||||||
|
|
||||||
# scoring_functions = [
|
scoring_functions = [
|
||||||
# "meta-reference::llm_as_judge_8b_correctness",
|
"meta-reference::llm_as_judge_8b_correctness",
|
||||||
# "meta-reference::subset_of",
|
"meta-reference::subset_of",
|
||||||
# ]
|
]
|
||||||
|
|
||||||
# task_id = "meta-reference::app_eval-2"
|
task_id = "meta-reference::app_eval-2"
|
||||||
# task_def = EvalTaskDefWithProvider(
|
task_def = EvalTaskDefWithProvider(
|
||||||
# identifier=task_id,
|
identifier=task_id,
|
||||||
# dataset_id="test_dataset_for_eval",
|
dataset_id="test_dataset_for_eval",
|
||||||
# scoring_functions=scoring_functions,
|
scoring_functions=scoring_functions,
|
||||||
# provider_id="meta-reference",
|
provider_id="meta-reference",
|
||||||
# )
|
)
|
||||||
# await eval_tasks_impl.register_eval_task(task_def)
|
await eval_tasks_impl.register_eval_task(task_def)
|
||||||
# response = await eval_impl.run_eval(
|
response = await eval_impl.run_eval(
|
||||||
# task_id=task_id,
|
task_id=task_id,
|
||||||
# task_config=AppEvalTaskConfig(
|
task_config=AppEvalTaskConfig(
|
||||||
# eval_candidate=ModelCandidate(
|
eval_candidate=ModelCandidate(
|
||||||
# model="Llama3.2-3B-Instruct",
|
model="Llama3.2-3B-Instruct",
|
||||||
# sampling_params=SamplingParams(),
|
sampling_params=SamplingParams(),
|
||||||
# ),
|
),
|
||||||
# ),
|
),
|
||||||
# )
|
)
|
||||||
# assert response.job_id == "0"
|
assert response.job_id == "0"
|
||||||
# job_status = await eval_impl.job_status(task_id, response.job_id)
|
job_status = await eval_impl.job_status(task_id, response.job_id)
|
||||||
# assert job_status and job_status.value == "completed"
|
assert job_status and job_status.value == "completed"
|
||||||
# eval_response = await eval_impl.job_result(task_id, response.job_id)
|
eval_response = await eval_impl.job_result(task_id, response.job_id)
|
||||||
|
|
||||||
# assert eval_response is not None
|
assert eval_response is not None
|
||||||
# assert len(eval_response.generations) == 5
|
assert len(eval_response.generations) == 5
|
||||||
# assert "meta-reference::subset_of" in eval_response.scores
|
assert "meta-reference::subset_of" in eval_response.scores
|
||||||
# assert "meta-reference::llm_as_judge_8b_correctness" in eval_response.scores
|
assert "meta-reference::llm_as_judge_8b_correctness" in eval_response.scores
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_eval_run_benchmark_eval(self, eval_stack):
|
async def test_eval_run_benchmark_eval(self, eval_stack):
|
||||||
|
@ -152,8 +141,8 @@ class Testeval:
|
||||||
num_examples=3,
|
num_examples=3,
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
job_status = await eval_impl.job_status(response.job_id, benchmark_id)
|
job_status = await eval_impl.job_status(benchmark_id, response.job_id)
|
||||||
assert job_status and job_status.value == "completed"
|
assert job_status and job_status.value == "completed"
|
||||||
eval_response = await eval_impl.job_result(response.job_id, benchmark_id)
|
eval_response = await eval_impl.job_result(benchmark_id, response.job_id)
|
||||||
assert eval_response is not None
|
assert eval_response is not None
|
||||||
assert len(eval_response.generations) == 3
|
assert len(eval_response.generations) == 3
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue