mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-18 23:28:53 +00:00
feat: Enable setting a default embedding model in the stack (#3803)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.12) (push) Failing after 1s
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m28s
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.12) (push) Failing after 1s
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m28s
# What does this PR do? Enables automatic embedding model detection for vector stores and by using a `default_configured` boolean that can be defined in the `run.yaml`. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> ## Test Plan - Unit tests - Integration tests - Simple example below: Spin up the stack: ```bash uv run llama stack build --distro starter --image-type venv --run ``` Then test with OpenAI's client: ```python from openai import OpenAI client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none") vs = client.vector_stores.create() ``` Previously you needed: ```python vs = client.vector_stores.create( extra_body={ "embedding_model": "sentence-transformers/all-MiniLM-L6-v2", "embedding_dimension": 384, } ) ``` The `extra_body` is now unnecessary. --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
d875e427bf
commit
ef4bc70bbe
29 changed files with 553 additions and 403 deletions
|
@ -26,7 +26,7 @@ def available_providers() -> list[ProviderSpec]:
|
|||
config_class="llama_stack.providers.inline.vector_io.faiss.FaissVectorIOConfig",
|
||||
deprecation_warning="Please use the `inline::faiss` provider instead.",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
optional_api_dependencies=[Api.files, Api.models],
|
||||
description="Meta's reference implementation of a vector database.",
|
||||
),
|
||||
InlineProviderSpec(
|
||||
|
@ -36,7 +36,7 @@ def available_providers() -> list[ProviderSpec]:
|
|||
module="llama_stack.providers.inline.vector_io.faiss",
|
||||
config_class="llama_stack.providers.inline.vector_io.faiss.FaissVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
optional_api_dependencies=[Api.files, Api.models],
|
||||
description="""
|
||||
[Faiss](https://github.com/facebookresearch/faiss) is an inline vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly in memory.
|
||||
|
@ -89,7 +89,7 @@ more details about Faiss in general.
|
|||
module="llama_stack.providers.inline.vector_io.sqlite_vec",
|
||||
config_class="llama_stack.providers.inline.vector_io.sqlite_vec.SQLiteVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
optional_api_dependencies=[Api.files, Api.models],
|
||||
description="""
|
||||
[SQLite-Vec](https://github.com/asg017/sqlite-vec) is an inline vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly within an SQLite database.
|
||||
|
@ -297,7 +297,7 @@ See [sqlite-vec's GitHub repo](https://github.com/asg017/sqlite-vec/tree/main) f
|
|||
config_class="llama_stack.providers.inline.vector_io.sqlite_vec.SQLiteVectorIOConfig",
|
||||
deprecation_warning="Please use the `inline::sqlite-vec` provider (notice the hyphen instead of underscore) instead.",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
optional_api_dependencies=[Api.files, Api.models],
|
||||
description="""
|
||||
Please refer to the sqlite-vec provider documentation.
|
||||
""",
|
||||
|
@ -310,7 +310,7 @@ Please refer to the sqlite-vec provider documentation.
|
|||
module="llama_stack.providers.remote.vector_io.chroma",
|
||||
config_class="llama_stack.providers.remote.vector_io.chroma.ChromaVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
optional_api_dependencies=[Api.files, Api.models],
|
||||
description="""
|
||||
[Chroma](https://www.trychroma.com/) is an inline and remote vector
|
||||
database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database.
|
||||
|
@ -352,7 +352,7 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
|
|||
module="llama_stack.providers.inline.vector_io.chroma",
|
||||
config_class="llama_stack.providers.inline.vector_io.chroma.ChromaVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
optional_api_dependencies=[Api.files, Api.models],
|
||||
description="""
|
||||
[Chroma](https://www.trychroma.com/) is an inline and remote vector
|
||||
database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database.
|
||||
|
@ -396,7 +396,7 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
|
|||
module="llama_stack.providers.remote.vector_io.pgvector",
|
||||
config_class="llama_stack.providers.remote.vector_io.pgvector.PGVectorVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
optional_api_dependencies=[Api.files, Api.models],
|
||||
description="""
|
||||
[PGVector](https://github.com/pgvector/pgvector) is a remote vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly in memory.
|
||||
|
@ -508,7 +508,7 @@ See [PGVector's documentation](https://github.com/pgvector/pgvector) for more de
|
|||
config_class="llama_stack.providers.remote.vector_io.weaviate.WeaviateVectorIOConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.vector_io.weaviate.WeaviateRequestProviderData",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
optional_api_dependencies=[Api.files, Api.models],
|
||||
description="""
|
||||
[Weaviate](https://weaviate.io/) is a vector database provider for Llama Stack.
|
||||
It allows you to store and query vectors directly within a Weaviate database.
|
||||
|
@ -548,7 +548,7 @@ See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more
|
|||
module="llama_stack.providers.inline.vector_io.qdrant",
|
||||
config_class="llama_stack.providers.inline.vector_io.qdrant.QdrantVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
optional_api_dependencies=[Api.files, Api.models],
|
||||
description=r"""
|
||||
[Qdrant](https://qdrant.tech/documentation/) is an inline and remote vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly in memory.
|
||||
|
@ -601,7 +601,7 @@ See the [Qdrant documentation](https://qdrant.tech/documentation/) for more deta
|
|||
module="llama_stack.providers.remote.vector_io.qdrant",
|
||||
config_class="llama_stack.providers.remote.vector_io.qdrant.QdrantVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
optional_api_dependencies=[Api.files, Api.models],
|
||||
description="""
|
||||
Please refer to the inline provider documentation.
|
||||
""",
|
||||
|
@ -614,7 +614,7 @@ Please refer to the inline provider documentation.
|
|||
module="llama_stack.providers.remote.vector_io.milvus",
|
||||
config_class="llama_stack.providers.remote.vector_io.milvus.MilvusVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
optional_api_dependencies=[Api.files, Api.models],
|
||||
description="""
|
||||
[Milvus](https://milvus.io/) is an inline and remote vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly within a Milvus database.
|
||||
|
@ -820,7 +820,7 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi
|
|||
module="llama_stack.providers.inline.vector_io.milvus",
|
||||
config_class="llama_stack.providers.inline.vector_io.milvus.MilvusVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
optional_api_dependencies=[Api.files, Api.models],
|
||||
description="""
|
||||
Please refer to the remote provider documentation.
|
||||
""",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue