mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-18 15:27:16 +00:00
feat: Enable setting a default embedding model in the stack (#3803)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.12) (push) Failing after 1s
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m28s
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.12) (push) Failing after 1s
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m28s
# What does this PR do? Enables automatic embedding model detection for vector stores and by using a `default_configured` boolean that can be defined in the `run.yaml`. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> ## Test Plan - Unit tests - Integration tests - Simple example below: Spin up the stack: ```bash uv run llama stack build --distro starter --image-type venv --run ``` Then test with OpenAI's client: ```python from openai import OpenAI client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none") vs = client.vector_stores.create() ``` Previously you needed: ```python vs = client.vector_stores.create( extra_body={ "embedding_model": "sentence-transformers/all-MiniLM-L6-v2", "embedding_dimension": 384, } ) ``` The `extra_body` is now unnecessary. --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
d875e427bf
commit
ef4bc70bbe
29 changed files with 553 additions and 403 deletions
|
@ -17,6 +17,7 @@ from pydantic import TypeAdapter
|
|||
|
||||
from llama_stack.apis.common.errors import VectorStoreNotFoundError
|
||||
from llama_stack.apis.files import Files, OpenAIFileObject
|
||||
from llama_stack.apis.models import Model, Models
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
|
@ -77,11 +78,14 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
|
||||
# Implementing classes should call super().__init__() in their __init__ method
|
||||
# to properly initialize the mixin attributes.
|
||||
def __init__(self, files_api: Files | None = None, kvstore: KVStore | None = None):
|
||||
def __init__(
|
||||
self, files_api: Files | None = None, kvstore: KVStore | None = None, models_api: Models | None = None
|
||||
):
|
||||
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||
self.openai_file_batches: dict[str, dict[str, Any]] = {}
|
||||
self.files_api = files_api
|
||||
self.kvstore = kvstore
|
||||
self.models_api = models_api
|
||||
self._last_file_batch_cleanup_time = 0
|
||||
self._file_batch_tasks: dict[str, asyncio.Task[None]] = {}
|
||||
|
||||
|
@ -348,20 +352,32 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
"""Creates a vector store."""
|
||||
created_at = int(time.time())
|
||||
|
||||
# Extract llama-stack-specific parameters from extra_body
|
||||
extra = params.model_extra or {}
|
||||
provider_vector_db_id = extra.get("provider_vector_db_id")
|
||||
embedding_model = extra.get("embedding_model")
|
||||
embedding_dimension = extra.get("embedding_dimension", 768)
|
||||
embedding_dimension = extra.get("embedding_dimension")
|
||||
# use provider_id set by router; fallback to provider's own ID when used directly via --stack-config
|
||||
provider_id = extra.get("provider_id") or getattr(self, "__provider_id__", None)
|
||||
# Derive the canonical vector_db_id (allow override, else generate)
|
||||
vector_db_id = provider_vector_db_id or generate_object_id("vector_store", lambda: f"vs_{uuid.uuid4()}")
|
||||
|
||||
if embedding_model is None:
|
||||
raise ValueError("Embedding model is required")
|
||||
result = await self._get_default_embedding_model_and_dimension()
|
||||
if result is None:
|
||||
raise ValueError(
|
||||
"embedding_model is required in extra_body when creating a vector store. "
|
||||
"No default embedding model could be determined automatically."
|
||||
)
|
||||
embedding_model, embedding_dimension = result
|
||||
elif embedding_dimension is None:
|
||||
# Embedding model was provided but dimension wasn't, look it up
|
||||
embedding_dimension = await self._get_embedding_dimension_for_model(embedding_model)
|
||||
if embedding_dimension is None:
|
||||
raise ValueError(
|
||||
f"Could not determine embedding dimension for model '{embedding_model}'. "
|
||||
"Please provide embedding_dimension in extra_body or ensure the model metadata contains embedding_dimension."
|
||||
)
|
||||
|
||||
# Embedding dimension is required (defaulted to 768 if not provided)
|
||||
if embedding_dimension is None:
|
||||
raise ValueError("Embedding dimension is required")
|
||||
|
||||
|
@ -428,6 +444,85 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
store_info = self.openai_vector_stores[vector_db_id]
|
||||
return VectorStoreObject.model_validate(store_info)
|
||||
|
||||
async def _get_embedding_models(self) -> list[Model]:
|
||||
"""Get list of embedding models from the models API."""
|
||||
if not self.models_api:
|
||||
return []
|
||||
|
||||
models_response = await self.models_api.list_models()
|
||||
models_list = models_response.data if hasattr(models_response, "data") else models_response
|
||||
|
||||
embedding_models = []
|
||||
for model in models_list:
|
||||
if not isinstance(model, Model):
|
||||
logger.warning(f"Non-Model object found in models list: {type(model)} - {model}")
|
||||
continue
|
||||
if model.model_type == "embedding":
|
||||
embedding_models.append(model)
|
||||
|
||||
return embedding_models
|
||||
|
||||
async def _get_embedding_dimension_for_model(self, model_id: str) -> int | None:
|
||||
"""Get embedding dimension for a specific model by looking it up in the models API.
|
||||
|
||||
Args:
|
||||
model_id: The identifier of the embedding model (supports both prefixed and non-prefixed)
|
||||
|
||||
Returns:
|
||||
The embedding dimension for the model, or None if not found
|
||||
"""
|
||||
embedding_models = await self._get_embedding_models()
|
||||
|
||||
for model in embedding_models:
|
||||
# Check for exact match first
|
||||
if model.identifier == model_id:
|
||||
embedding_dimension = model.metadata.get("embedding_dimension")
|
||||
if embedding_dimension is not None:
|
||||
return int(embedding_dimension)
|
||||
else:
|
||||
logger.warning(f"Model {model_id} found but has no embedding_dimension in metadata")
|
||||
return None
|
||||
|
||||
# Check for prefixed/unprefixed variations
|
||||
# If model_id is unprefixed, check if it matches the resource_id
|
||||
if model.provider_resource_id == model_id:
|
||||
embedding_dimension = model.metadata.get("embedding_dimension")
|
||||
if embedding_dimension is not None:
|
||||
return int(embedding_dimension)
|
||||
|
||||
return None
|
||||
|
||||
async def _get_default_embedding_model_and_dimension(self) -> tuple[str, int] | None:
|
||||
"""Get default embedding model from the models API.
|
||||
|
||||
Looks for embedding models marked with default_configured=True in metadata.
|
||||
Returns None if no default embedding model is found.
|
||||
Raises ValueError if multiple defaults are found.
|
||||
"""
|
||||
embedding_models = await self._get_embedding_models()
|
||||
|
||||
default_models = []
|
||||
for model in embedding_models:
|
||||
if model.metadata.get("default_configured") is True:
|
||||
default_models.append(model.identifier)
|
||||
|
||||
if len(default_models) > 1:
|
||||
raise ValueError(
|
||||
f"Multiple embedding models marked as default_configured=True: {default_models}. "
|
||||
"Only one embedding model can be marked as default."
|
||||
)
|
||||
|
||||
if default_models:
|
||||
model_id = default_models[0]
|
||||
embedding_dimension = await self._get_embedding_dimension_for_model(model_id)
|
||||
if embedding_dimension is None:
|
||||
raise ValueError(f"Embedding model '{model_id}' has no embedding_dimension in metadata")
|
||||
logger.info(f"Using default embedding model: {model_id} with dimension {embedding_dimension}")
|
||||
return model_id, embedding_dimension
|
||||
|
||||
logger.info("DEBUG: No default embedding models found")
|
||||
return None
|
||||
|
||||
async def openai_list_vector_stores(
|
||||
self,
|
||||
limit: int | None = 20,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue