feat: Enable setting a default embedding model in the stack (#3803)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.12) (push) Failing after 1s
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m28s

# What does this PR do?

Enables automatic embedding model detection for vector stores and by
using a `default_configured` boolean that can be defined in the
`run.yaml`.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
- Unit tests
- Integration tests
- Simple example below:

Spin up the stack:
```bash
uv run llama stack build --distro starter --image-type venv --run
```
Then test with OpenAI's client:
```python
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none")
vs = client.vector_stores.create()
```
Previously you needed:

```python
vs = client.vector_stores.create(
    extra_body={
        "embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
        "embedding_dimension": 384,
    }
)
```

The `extra_body` is now unnecessary.

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
Francisco Arceo 2025-10-14 21:25:13 -04:00 committed by GitHub
parent d875e427bf
commit ef4bc70bbe
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
29 changed files with 553 additions and 403 deletions

View file

@ -0,0 +1,93 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Unit tests for Stack validation functions.
"""
from unittest.mock import AsyncMock
import pytest
from llama_stack.apis.models import Model, ModelType
from llama_stack.core.stack import validate_default_embedding_model
from llama_stack.providers.datatypes import Api
class TestStackValidation:
"""Test Stack validation functions."""
@pytest.mark.parametrize(
"models,should_raise",
[
([], False), # No models
(
[
Model(
identifier="emb1",
model_type=ModelType.embedding,
metadata={"default_configured": True},
provider_id="p",
provider_resource_id="emb1",
)
],
False,
), # Single default
(
[
Model(
identifier="emb1",
model_type=ModelType.embedding,
metadata={"default_configured": True},
provider_id="p",
provider_resource_id="emb1",
),
Model(
identifier="emb2",
model_type=ModelType.embedding,
metadata={"default_configured": True},
provider_id="p",
provider_resource_id="emb2",
),
],
True,
), # Multiple defaults
(
[
Model(
identifier="emb1",
model_type=ModelType.embedding,
metadata={"default_configured": True},
provider_id="p",
provider_resource_id="emb1",
),
Model(
identifier="llm1",
model_type=ModelType.llm,
metadata={"default_configured": True},
provider_id="p",
provider_resource_id="llm1",
),
],
False,
), # Ignores non-embedding
],
)
async def test_validate_default_embedding_model(self, models, should_raise):
"""Test validation with various model configurations."""
mock_models_impl = AsyncMock()
mock_models_impl.list_models.return_value = models
impls = {Api.models: mock_models_impl}
if should_raise:
with pytest.raises(ValueError, match="Multiple embedding models marked as default_configured=True"):
await validate_default_embedding_model(impls)
else:
await validate_default_embedding_model(impls)
async def test_validate_default_embedding_model_no_models_api(self):
"""Test validation when models API is not available."""
await validate_default_embedding_model({})

View file

@ -144,6 +144,7 @@ async def sqlite_vec_adapter(sqlite_vec_db_path, unique_kvstore_config, mock_inf
config=config,
inference_api=mock_inference_api,
files_api=None,
models_api=None,
)
collection_id = f"sqlite_test_collection_{np.random.randint(1e6)}"
await adapter.initialize()
@ -182,6 +183,7 @@ async def faiss_vec_adapter(unique_kvstore_config, mock_inference_api, embedding
config=config,
inference_api=mock_inference_api,
files_api=None,
models_api=None,
)
await adapter.initialize()
await adapter.register_vector_db(

View file

@ -11,6 +11,7 @@ import numpy as np
import pytest
from llama_stack.apis.files import Files
from llama_stack.apis.models import Models
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse
from llama_stack.providers.datatypes import HealthStatus
@ -75,6 +76,12 @@ def mock_files_api():
return mock_api
@pytest.fixture
def mock_models_api():
mock_api = MagicMock(spec=Models)
return mock_api
@pytest.fixture
def faiss_config():
config = MagicMock(spec=FaissVectorIOConfig)
@ -110,7 +117,7 @@ async def test_faiss_query_vector_returns_infinity_when_query_and_embedding_are_
assert response.chunks[1] == sample_chunks[1]
async def test_health_success():
async def test_health_success(mock_models_api):
"""Test that the health check returns OK status when faiss is working correctly."""
# Create a fresh instance of FaissVectorIOAdapter for testing
config = MagicMock()
@ -119,7 +126,9 @@ async def test_health_success():
with patch("llama_stack.providers.inline.vector_io.faiss.faiss.faiss.IndexFlatL2") as mock_index_flat:
mock_index_flat.return_value = MagicMock()
adapter = FaissVectorIOAdapter(config=config, inference_api=inference_api, files_api=files_api)
adapter = FaissVectorIOAdapter(
config=config, inference_api=inference_api, models_api=mock_models_api, files_api=files_api
)
# Calling the health method directly
response = await adapter.health()
@ -133,7 +142,7 @@ async def test_health_success():
mock_index_flat.assert_called_once_with(128) # VECTOR_DIMENSION is 128
async def test_health_failure():
async def test_health_failure(mock_models_api):
"""Test that the health check returns ERROR status when faiss encounters an error."""
# Create a fresh instance of FaissVectorIOAdapter for testing
config = MagicMock()
@ -143,7 +152,9 @@ async def test_health_failure():
with patch("llama_stack.providers.inline.vector_io.faiss.faiss.faiss.IndexFlatL2") as mock_index_flat:
mock_index_flat.side_effect = Exception("Test error")
adapter = FaissVectorIOAdapter(config=config, inference_api=inference_api, files_api=files_api)
adapter = FaissVectorIOAdapter(
config=config, inference_api=inference_api, models_api=mock_models_api, files_api=files_api
)
# Calling the health method directly
response = await adapter.health()

View file

@ -6,16 +6,18 @@
import json
import time
from unittest.mock import AsyncMock, patch
from unittest.mock import AsyncMock, Mock, patch
import numpy as np
import pytest
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.models import Model, ModelType
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
Chunk,
OpenAICreateVectorStoreFileBatchRequestWithExtraBody,
OpenAICreateVectorStoreRequestWithExtraBody,
QueryChunksResponse,
VectorStoreChunkingStrategyAuto,
VectorStoreFileObject,
@ -961,3 +963,93 @@ async def test_max_concurrent_files_per_batch(vector_io_adapter):
assert batch.status == "in_progress"
assert batch.file_counts.total == 8
assert batch.file_counts.in_progress == 8
async def test_get_default_embedding_model_success(vector_io_adapter):
"""Test successful default embedding model detection."""
# Mock models API with a default model
mock_models_api = Mock()
mock_models_api.list_models = AsyncMock(
return_value=Mock(
data=[
Model(
identifier="nomic-embed-text-v1.5",
model_type=ModelType.embedding,
provider_id="test-provider",
metadata={
"embedding_dimension": 768,
"default_configured": True,
},
)
]
)
)
vector_io_adapter.models_api = mock_models_api
result = await vector_io_adapter._get_default_embedding_model_and_dimension()
assert result is not None
model_id, dimension = result
assert model_id == "nomic-embed-text-v1.5"
assert dimension == 768
async def test_get_default_embedding_model_multiple_defaults_error(vector_io_adapter):
"""Test error when multiple models are marked as default."""
mock_models_api = Mock()
mock_models_api.list_models = AsyncMock(
return_value=Mock(
data=[
Model(
identifier="model1",
model_type=ModelType.embedding,
provider_id="test-provider",
metadata={"embedding_dimension": 768, "default_configured": True},
),
Model(
identifier="model2",
model_type=ModelType.embedding,
provider_id="test-provider",
metadata={"embedding_dimension": 512, "default_configured": True},
),
]
)
)
vector_io_adapter.models_api = mock_models_api
with pytest.raises(ValueError, match="Multiple embedding models marked as default_configured=True"):
await vector_io_adapter._get_default_embedding_model_and_dimension()
async def test_openai_create_vector_store_uses_default_model(vector_io_adapter):
"""Test that vector store creation uses default embedding model when none specified."""
# Mock models API and dependencies
mock_models_api = Mock()
mock_models_api.list_models = AsyncMock(
return_value=Mock(
data=[
Model(
identifier="default-model",
model_type=ModelType.embedding,
provider_id="test-provider",
metadata={"embedding_dimension": 512, "default_configured": True},
)
]
)
)
vector_io_adapter.models_api = mock_models_api
vector_io_adapter.register_vector_db = AsyncMock()
vector_io_adapter.__provider_id__ = "test-provider"
# Create vector store without specifying embedding model
params = OpenAICreateVectorStoreRequestWithExtraBody(name="test-store")
result = await vector_io_adapter.openai_create_vector_store(params)
# Verify the vector store was created with default model
assert result.name == "test-store"
vector_io_adapter.register_vector_db.assert_called_once()
call_args = vector_io_adapter.register_vector_db.call_args[0][0]
assert call_args.embedding_model == "default-model"
assert call_args.embedding_dimension == 512