mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-11 13:44:38 +00:00
chore: Updating documentation and adding exception handling for Vector Stores in RAG Tool and updating inference to use openai and updating memory implementation to use existing libraries
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
28696c3f30
commit
ff0bd414b1
27 changed files with 926 additions and 403 deletions
|
@ -178,3 +178,41 @@ def test_content_from_data_and_mime_type_both_encodings_fail():
|
|||
# Should raise an exception instead of returning empty string
|
||||
with pytest.raises(UnicodeDecodeError):
|
||||
content_from_data_and_mime_type(data, mime_type)
|
||||
|
||||
|
||||
async def test_memory_tool_error_handling():
|
||||
"""Test that memory tool handles various failures gracefully without crashing."""
|
||||
from llama_stack.providers.inline.tool_runtime.rag.config import RagToolRuntimeConfig
|
||||
from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRuntimeImpl
|
||||
|
||||
config = RagToolRuntimeConfig()
|
||||
memory_tool = MemoryToolRuntimeImpl(
|
||||
config=config,
|
||||
vector_io_api=AsyncMock(),
|
||||
inference_api=AsyncMock(),
|
||||
files_api=AsyncMock(),
|
||||
)
|
||||
|
||||
docs = [
|
||||
RAGDocument(document_id="good_doc", content="Good content", metadata={}),
|
||||
RAGDocument(document_id="bad_url_doc", content=URL(uri="https://bad.url"), metadata={}),
|
||||
RAGDocument(document_id="another_good_doc", content="Another good content", metadata={}),
|
||||
]
|
||||
|
||||
mock_file1 = MagicMock()
|
||||
mock_file1.id = "file_good1"
|
||||
mock_file2 = MagicMock()
|
||||
mock_file2.id = "file_good2"
|
||||
memory_tool.files_api.openai_upload_file.side_effect = [mock_file1, mock_file2]
|
||||
|
||||
with patch("httpx.AsyncClient") as mock_client:
|
||||
mock_instance = AsyncMock()
|
||||
mock_instance.get.side_effect = Exception("Bad URL")
|
||||
mock_client.return_value.__aenter__.return_value = mock_instance
|
||||
|
||||
# won't raise exception despite one document failing
|
||||
await memory_tool.insert(docs, "vector_store_123")
|
||||
|
||||
# processed 2 documents successfully, skipped 1
|
||||
assert memory_tool.files_api.openai_upload_file.call_count == 2
|
||||
assert memory_tool.vector_io_api.openai_attach_file_to_vector_store.call_count == 2
|
||||
|
|
|
@ -81,3 +81,58 @@ class TestRagQuery:
|
|||
# Test that invalid mode raises an error
|
||||
with pytest.raises(ValueError):
|
||||
RAGQueryConfig(mode="wrong_mode")
|
||||
|
||||
async def test_query_adds_vector_db_id_to_chunk_metadata(self):
|
||||
rag_tool = MemoryToolRuntimeImpl(
|
||||
config=MagicMock(),
|
||||
vector_io_api=MagicMock(),
|
||||
inference_api=MagicMock(),
|
||||
files_api=MagicMock(),
|
||||
)
|
||||
|
||||
vector_db_ids = ["db1", "db2"]
|
||||
|
||||
# Fake chunks from each DB
|
||||
chunk_metadata1 = ChunkMetadata(
|
||||
document_id="doc1",
|
||||
chunk_id="chunk1",
|
||||
source="test_source1",
|
||||
metadata_token_count=5,
|
||||
)
|
||||
chunk1 = Chunk(
|
||||
content="chunk from db1",
|
||||
metadata={"vector_db_id": "db1", "document_id": "doc1"},
|
||||
stored_chunk_id="c1",
|
||||
chunk_metadata=chunk_metadata1,
|
||||
)
|
||||
|
||||
chunk_metadata2 = ChunkMetadata(
|
||||
document_id="doc2",
|
||||
chunk_id="chunk2",
|
||||
source="test_source2",
|
||||
metadata_token_count=5,
|
||||
)
|
||||
chunk2 = Chunk(
|
||||
content="chunk from db2",
|
||||
metadata={"vector_db_id": "db2", "document_id": "doc2"},
|
||||
stored_chunk_id="c2",
|
||||
chunk_metadata=chunk_metadata2,
|
||||
)
|
||||
|
||||
rag_tool.vector_io_api.query_chunks = AsyncMock(
|
||||
side_effect=[
|
||||
QueryChunksResponse(chunks=[chunk1], scores=[0.9]),
|
||||
QueryChunksResponse(chunks=[chunk2], scores=[0.8]),
|
||||
]
|
||||
)
|
||||
|
||||
result = await rag_tool.query(content="test", vector_db_ids=vector_db_ids)
|
||||
returned_chunks = result.metadata["chunks"]
|
||||
returned_scores = result.metadata["scores"]
|
||||
returned_doc_ids = result.metadata["document_ids"]
|
||||
returned_vector_db_ids = result.metadata["vector_db_ids"]
|
||||
|
||||
assert returned_chunks == ["chunk from db1", "chunk from db2"]
|
||||
assert returned_scores == (0.9, 0.8)
|
||||
assert returned_doc_ids == ["doc1", "doc2"]
|
||||
assert returned_vector_db_ids == ["db1", "db2"]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue