# What does this PR do?
- Update `/eval-tasks` to `/benchmarks`
- ⚠️ Remove differentiation between `app` v.s. `benchmark` eval task
config. Now we only have `BenchmarkConfig`. The overloaded `benchmark`
is confusing and do not add any value. Backward compatibility is being
kept as the "type" is not being used anywhere.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
- This change is backward compatible
- Run notebook test with
```
pytest -v -s --nbval-lax ./docs/getting_started.ipynb
pytest -v -s --nbval-lax ./docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb
```
<img width="846" alt="image"
src="https://github.com/user-attachments/assets/d2fc06a7-593a-444f-bc1f-10ab9b0c843d"
/>
[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
---------
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
Signed-off-by: Ben Browning <bbrownin@redhat.com>
Signed-off-by: Sébastien Han <seb@redhat.com>
Signed-off-by: reidliu <reid201711@gmail.com>
Co-authored-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
Co-authored-by: Ben Browning <ben324@gmail.com>
Co-authored-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Reid <61492567+reidliu41@users.noreply.github.com>
Co-authored-by: reidliu <reid201711@gmail.com>
Co-authored-by: Yuan Tang <terrytangyuan@gmail.com>
# What does this PR do?
This changes all VectorIO providers classes to follow the pattern
`<ProviderName>VectorIOConfig` and `<ProviderName>VectorIOAdapter`. All
API endpoints for VectorIOs are currently consistent with `/vector-io`.
Note that API endpoint for VectorDB stay unchanged as `/vector-dbs`.
## Test Plan
I don't have a way to test all providers. This is a simple renaming so
things should work as expected.
---------
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
# What does this PR do?
- Configured ruff linter to automatically fix import sorting issues.
- Set --exit-non-zero-on-fix to ensure non-zero exit code when fixes are
applied.
- Enabled the 'I' selection to focus on import-related linting rules.
- Ran the linter, and formatted all codebase imports accordingly.
- Removed the black dep from the "dev" group since we use ruff
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Remove :path in agents, we cannot have :path in params inside endpoints
except last one
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
```
llama stack run
```
[//]: # (## Documentation)
# What does this PR do?
Make attributes in telemetry be only primitive types and avoid arbitrary
nesting.
## Test Plan
```
LLAMA_STACK_DISABLE_VERSION_CHECK=true llama stack run ~/.llama/distributions/fireworks/fireworks-run.yaml
LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v tests/client-sdk/agents/test_agents.py -k "test_builtin_tool_web_search"
# Verified that attributes still show up correclty in jaeger
```
# What does this PR do?
Defines a MetricResponseMixin which can be inherited by any response
class. Adds it to chat completion response types.
This is a short term solution to allow inference API to return metrics
The ideal way to do this is to have a way for all response types to
include metrics
and all metric events logged to the telemetry API to be included with
the response
To do this, we will need to augment all response types with a metrics
field.
We have hit a blocker from stainless SDK that prevents us from doing
this.
The blocker is that if we were to augment the response types that have a
data field
in them like so
class ListModelsResponse(BaseModel):
metrics: Optional[List[MetricEvent]] = None
data: List[Models]
...
The client SDK will need to access the data by using a .data field,
which is not
ergonomic. Stainless SDK does support unwrapping the response type, but
it
requires that the response type to only have a single field.
We will need a way in the client SDK to signal that the metrics are
needed
and if they are needed, the client SDK has to return the full response
type
without unwrapping it.
## Test Plan
sh run_openapi_generator.sh ./
sh stainless_sync.sh dineshyv/dev add-metrics-to-resp-v4
LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/fireworks/fireworks-run.yaml"
pytest -v tests/client-sdk/agents/test_agents.py
# What does this PR do?
The current default system prompt for llama3.2 tends to overindex on
tool calling and doesn't work well when the prompt does not require tool
calling.
This PR adds an option to override the default system prompt, and
organizes tool-related configs into a new config object.
- [ ] Addresses issue (#issue)
## Test Plan
LLAMA_STACK_CONFIG=together pytest
\-\-inference\-model=meta\-llama/Llama\-3\.3\-70B\-Instruct -s -v
tests/client-sdk/agents/test_agents.py::test_override_system_message_behavior
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
# What does this PR do?
The current default system prompt for llama3.2 tends to overindex on
tool calling and doesn't work well when the prompt does not require tool
calling.
This PR adds an option to override the default system prompt, and
organizes tool-related configs into a new config object.
- [ ] Addresses issue (#issue)
## Test Plan
python -m unittest
llama_stack.providers.tests.inference.test_prompt_adapter
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with
[ReviewStack](https://reviewstack.dev/meta-llama/llama-stack/pull/937).
* #938
* __->__ #937
Lint check in main branch is failing. This fixes the lint check after we
moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We
need to move to a `ruff.toml` file as well as fixing and ignoring some
additional checks.
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
# What does this PR do?
- Discussion in
https://github.com/meta-llama/llama-stack/pull/906#discussion_r1936260819
- image.data should accept base64 string as input instead of binary
bytes, change prompt_adapter to account for that.
## Test Plan
```
pytest -v tests/client-sdk/inference/test_inference.py
```
with test in https://github.com/meta-llama/llama-stack/pull/906
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
We desperately need to document our APIs. This is the basic requirement
of having a Spec :)
This PR updates the OpenAPI generator so documentation for request
parameters and object fields can be properly added to the OpenAPI specs.
From there, this should get picked by Stainless, etc.
## Test Plan:
Updated client-sdk (See
https://github.com/meta-llama/llama-stack-client-python/pull/104) and
then ran:
```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=../../llama_stack/templates/fireworks/run.yaml pytest -s -v inference/test_inference.py agents/test_agents.py
```
# What does this PR do?
Add response format for agents structured output.
- [ ] Using structured output for agents (interior_design app as an
example) (#issue)
https://github.com/meta-llama/llama-stack-apps/issues/122
## Test Plan
E2E test plan with llama-stack-apps interior_design
Please describe:
Test ran:
- provide instructions so it can be reproduced.
Start your distro:
llama stack run llama_stack/templates/fireworks/run.yaml --env
FIREWORKS_API_KEY=<API_KEY>
Run api test:
```PYTHONPATH=. python examples/interior_design_assistant/api.py localhost 5000 examples/interior_design_assistant/resources/documents/ examples/interior_design_assistant/resources/images/fireplaces```
## Sources
Results:
https://github.com/meta-llama/llama-stack-client-python/pull/72
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
# What does this PR do?
Previously the tests hard coded the tool prompt format to be json which
will cause it to fail when using 3.2/3.3 family of models. This change
make the default to be none for the agent config and just remove the
specification in the tests.
## Test Plan
LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v
tests/client-sdk/agents/test_agents.py
Some small updates to the inference types to make them more standard
Specifically:
- image data is now located in a "image" subkey
- similarly tool call data is located in a "tool_call" subkey
The pattern followed is `dict(type="foo", foo=<...>)`
Making a few small naming changes as per feedback:
- RAGToolRuntime methods are called `insert` and `query` to keep them
more general
- The tool names are changed to non-namespaced forms
`insert_into_memory` and `query_from_memory`
- The REST endpoints are more REST-ful
See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.
Third part:
- we need to make `tool_runtime.rag_tool.query_context()` and
`tool_runtime.rag_tool.insert_documents()` methods work smoothly with
complete type safety. To that end, we introduce a sub-resource path
`tool-runtime/rag-tool/` and make changes to the resolver to make things
work.
- the PR updates the agents implementation to directly call these typed
APIs for memory accesses rather than going through the complex, untyped
"invoke_tool" API. the code looks much nicer and simpler (expectedly.)
- there are a number of hacks in the server resolver implementation
still, we will live with some and fix some
Note that we must make sure the client SDKs are able to handle this
subresource complexity also. Stainless has support for subresources, so
this should be possible but beware.
## Test Plan
Our RAG test is sad (doesn't actually test for actual RAG output) but I
verified that the implementation works. I will work on fixing the RAG
test afterwards.
```bash
pytest -s -v tests/agents/test_agents.py -k "rag and together" --safety-shield=meta-llama/Llama-Guard-3-8B
```
See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.
This is the first part:
- delete other kinds of memory banks (keyvalue, keyword, graph) for now;
we will introduce a keyvalue store API as part of this design but not
use it in the RAG tool yet.
- renaming of the APIs
# What does this PR do?
Client SDK fixes
## Test Plan
LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-fireworks/fireworks-run.yaml"
pytest -v tests/client-sdk/safety/test_safety.py
LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-fireworks/fireworks-run.yaml"
pytest -v tests/client-sdk/memory/test_memory.py
# What does this PR do?
Changes Telemetry API to follow more idiomatic REST
- [ ] Addresses issue (#issue)
## Test Plan
TBD, once i get an approval for rest endpoints
# What does this PR do?
Since provider list returns a map grouping providers by API, we should
not be using data. This PR fixes the types to just be the plain dict,
basically reverting back to previous behavior
## Test Plan
llama-stack on fix-provider-list [$] 🅒 stack❯
LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml"
pytest -v tests/client-sdk/safety/test_safety.py
# What does this PR do?
This PR changes our API to follow more idiomatic REST API approaches of
having paths being resources and methods indicating the action being
performed.
Changes made to generator:
1) removed the prefix check of "get" as its not required and is actually
needed for other method types too
2) removed _ check on path since variables can have "_"
## Test Plan
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v
tests/client-sdk/agents/test_agents.py
## context
In this PR, we defined 2 llama stack dataset formats (instruct, dialog)
- For instruct dataset format, the column schema will be
[chat_completion_input, expected_answer], which is consistent with the
eval data format. This dataset format is the abstract of single turn QA
style post training data
- For dialog dataset format, the column schema will be [dialog], which
is a list of user messages and assistant messages that interleave
together. During training, the whole list will be the model input and
the loss is calculated on assistant messages only. This dataset format
is the abstract of multi turn chat style post training data
## changes
- defined the 2 llama stack dataset formats
- an adapter to convert llama stack dataset format to torchtune dataset
format
- move dataset format validation to post training level instead of
torchtune level since it's not specific to torchtune
- add localfs as datasetio provider
## test
instruct format
- use https://huggingface.co/datasets/llamastack/evals as dataset and
the training works as expected
<img width="1443" alt="Screenshot 2025-01-09 at 5 15 14 PM"
src="https://github.com/user-attachments/assets/2c37a936-c67a-4726-90e0-23fa0ba7000f"
/>
- use my generated local dataset and the training works as expected
<img width="1617" alt="Screenshot 2025-01-09 at 5 19 11 PM"
src="https://github.com/user-attachments/assets/0bdccbbf-bac2-472a-a365-15213e49bbfa"
/>
dialog format
- use my generated local dataset and the training works as expected
<img width="1588" alt="Screenshot 2025-01-09 at 5 23 16 PM"
src="https://github.com/user-attachments/assets/893915ba-41a3-4d51-948b-e872060ecede"
/>
# What does this PR do?
We are setting a default value of json for tool prompt format, which
conflicts with llama 3.2/3.3 models since they use python list. This PR
changes the defaults to None and in the code, we infer default based on
the model.
Addresses: #695
Tests:
❯ LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v
tests/client-sdk/inference/test_inference.py -k
"test_text_chat_completion"
pytest llama_stack/providers/tests/inference/test_prompt_adapter.py
# What does this PR do?
PR #639 introduced the notion of Tools API and ability to invoke tools
through API just as any resource. This PR changes the Agents to start
using the Tools API to invoke tools. Major changes include:
1) Ability to specify tool groups with AgentConfig
2) Agent gets the corresponding tool definitions for the specified tools
and pass along to the model
3) Attachements are now named as Documents and their behavior is mostly
unchanged from user perspective
4) You can specify args that can be injected to a tool call through
Agent config. This is especially useful in case of memory tool, where
you want the tool to operate on a specific memory bank.
5) You can also register tool groups with args, which lets the agent
inject these as well into the tool call.
6) All tests have been migrated to use new tools API and fixtures
including client SDK tests
7) Telemetry just works with tools API because of our trace protocol
decorator
## Test Plan
```
pytest -s -v -k fireworks llama_stack/providers/tests/agents/test_agents.py \
--safety-shield=meta-llama/Llama-Guard-3-8B \
--inference-model=meta-llama/Llama-3.1-8B-Instruct
pytest -s -v -k together llama_stack/providers/tests/tools/test_tools.py \
--safety-shield=meta-llama/Llama-Guard-3-8B \
--inference-model=meta-llama/Llama-3.1-8B-Instruct
LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml" pytest -v tests/client-sdk/agents/test_agents.py
```
run.yaml:
https://gist.github.com/dineshyv/0365845ad325e1c2cab755788ccc5994
Notebook:
https://colab.research.google.com/drive/1ck7hXQxRl6UvT-ijNRZ-gMZxH1G3cN2d?usp=sharing
## what does this PR do?
The current code hardcode the validation steps to run (forgot to change
it after testing). in this PR, we make it configurable by training
config
## test
On client side, issue a post training request with 20 validation steps,
server side logging shows that it runs 20 validation steps successfully
<img width="1128" alt="Screenshot 2025-01-02 at 8 21 06 PM"
src="https://github.com/user-attachments/assets/7a757516-c6ba-41d4-85c5-361a80ecf46e"
/>
# What does this PR do?
- See https://github.com/meta-llama/llama-stack/pull/666 &
https://github.com/meta-llama/llama-stack/pull/668
- Refactor BaseScoringFn to be just a minimal interface, add new
RegistrableBaseScoring
- Refactor data schema check
- To separately evaluate retrieval component in RAG, we will have
scoring functions needing "context" column additionally.
- Refactor braintrust eval (more scoring fn added & tested in following
PR)
## Test Plan
```
pytest -v -s -m llm_as_judge_scoring_together_inference scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference scoring/test_scoring.py
```
<img width="847" alt="image"
src="https://github.com/user-attachments/assets/d099cb2d-6f9c-4bdf-9d0d-f388cf758c0f"
/>
```
pytest -v -s -m meta_reference_eval_together_inference eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```
<img width="850" alt="image"
src="https://github.com/user-attachments/assets/dce28fc3-0493-4d34-820a-567260873cc8"
/>
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
# What does this PR do?
- vision inference via image as binary bytes fails with serialization
error
- add custom serialization for "bytes" in `_URLOrData`
## Test Plan
```
pytest -v -s -k "fireworks" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_non_streaming
```
**Before**
<img width="1020" alt="image"
src="https://github.com/user-attachments/assets/3803fcee-32ee-4b8e-ba46-47848e1a6247"
/>
**After**
<img width="1018" alt="image"
src="https://github.com/user-attachments/assets/f3e3156e-88ce-40fd-ad1b-44b87f376e03"
/>
<img width="822" alt="image"
src="https://github.com/user-attachments/assets/1898696f-95c0-4694-8a47-8f51c7de0e86"
/>
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
## What does this PR do?
This is a long-pending change and particularly important to get done
now.
Specifically:
- we cannot "localize" (aka download) any URLs from media attachments
anywhere near our modeling code. it must be done within llama-stack.
- `PIL.Image` is infesting all our APIs via `ImageMedia ->
InterleavedTextMedia` and that cannot be right at all. Anything in the
API surface must be "naturally serializable". We need a standard `{
type: "image", image_url: "<...>" }` which is more extensible
- `UserMessage`, `SystemMessage`, etc. are moved completely to
llama-stack from the llama-models repository.
See https://github.com/meta-llama/llama-models/pull/244 for the
corresponding PR in llama-models.
## Test Plan
```bash
cd llama_stack/providers/tests
pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py
pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py
pytest -s -v -k chroma memory/test_memory.py \
--env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar
pytest -s -v -k fireworks agents/test_agents.py \
--safety-shield=meta-llama/Llama-Guard-3-8B \
--inference-model=meta-llama/Llama-3.1-8B-Instruct
```
Updated the client sdk (see PR ...), installed the SDK in the same
environment and then ran the SDK tests:
```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py
LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py
# this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly
INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py
```
We cannot use recursive types because not only does our OpenAPI
generator not like them, even if it did, it is not easy for all client
languages to automatically construct proper APIs (especially considering
garbage collection) around them. For now, we can return a `Dict[str,
SpanWithStatus]` instead of `SpanWithChildren` and rely on the client to
reconstruct the tree.
Also fixed a super subtle issue with the OpenAPI generation process
(monkey-patching of json_schema_type wasn't working because of import
reordering.)
# What does this PR do?
**Why**
- Clean up examples which we will not maintain; reduce the surface area
to the minimal showcases
**What**
- Delete `client.py` in /apis/*
- Move all scripts to unit tests
- SDK sync in the future will just require running pytests
**Side notes**
- `bwrap` not available on Mac so code_interpreter will not work
## Test Plan
```
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk
```
<img width="725" alt="image"
src="https://github.com/user-attachments/assets/36bfe537-628d-43c3-8479-dcfcfe2e4035"
/>
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.