# What does this PR do?
Move to use vector_stores.search for file search tool in Responses,
which supports filters.
closes#2435
## Test Plan
Added e2e test with fitlers.
myenv ❯ llama stack run llama_stack/templates/fireworks/run.yaml
pytest -sv tests/verifications/openai_api/test_responses.py \
-k 'file_search and filters' \
--base-url=http://localhost:8321/v1/openai/v1 \
--model=meta-llama/Llama-3.3-70B-Instruct
# What does this PR do?
This is an initial working prototype of wiring up the `file_search`
builtin tool for the Responses API to our existing rag knowledge search
tool.
This is me seeing what I could pull together on top of the bits we
already have merged. This may not be the ideal way to implement this,
and things like how I shuffle the vector store ids from the original
response API tool request to the actual tool execution feel a bit hacky
(grep for `tool_kwargs["vector_db_ids"]` in `_execute_tool_call` to see
what I mean).
## Test Plan
I stubbed in some new tests to exercise this using text and pdf
documents.
Note that this is currently under tests/verification only because it
sometimes flakes with tool calling of the small Llama-3.2-3B model we
run in CI (and that I use as an example below). We'd want to make the
test a bit more robust in some way if we moved this over to
tests/integration and ran it in CI.
### OpenAI SaaS (to verify test correctness)
```
pytest -sv tests/verifications/openai_api/test_responses.py \
-k 'file_search' \
--base-url=https://api.openai.com/v1 \
--model=gpt-4o
```
### Fireworks with faiss vector store
```
llama stack run llama_stack/templates/fireworks/run.yaml
pytest -sv tests/verifications/openai_api/test_responses.py \
-k 'file_search' \
--base-url=http://localhost:8321/v1/openai/v1 \
--model=meta-llama/Llama-3.3-70B-Instruct
```
### Ollama with faiss vector store
This sometimes flakes on Ollama because the quantized small model
doesn't always choose to call the tool to answer the user's question.
But, it often works.
```
ollama run llama3.2:3b
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
llama stack run ./llama_stack/templates/ollama/run.yaml \
--image-type venv \
--env OLLAMA_URL="http://0.0.0.0:11434"
pytest -sv tests/verifications/openai_api/test_responses.py \
-k'file_search' \
--base-url=http://localhost:8321/v1/openai/v1 \
--model=meta-llama/Llama-3.2-3B-Instruct
```
### OpenAI provider with sqlite-vec vector store
```
llama stack run ./llama_stack/templates/starter/run.yaml --image-type venv
pytest -sv tests/verifications/openai_api/test_responses.py \
-k 'file_search' \
--base-url=http://localhost:8321/v1/openai/v1 \
--model=openai/gpt-4o-mini
```
### Ensure existing vector store integration tests still pass
```
ollama run llama3.2:3b
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
llama stack run ./llama_stack/templates/ollama/run.yaml \
--image-type venv \
--env OLLAMA_URL="http://0.0.0.0:11434"
LLAMA_STACK_CONFIG=http://localhost:8321 \
pytest -sv tests/integration/vector_io \
--text-model "meta-llama/Llama-3.2-3B-Instruct" \
--embedding-model=all-MiniLM-L6-v2
```
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
This adds the missing `text` parameter to the Responses API that is how
users control structured outputs. All we do with that parameter is map
it to the corresponding chat completion response_format.
## Test Plan
The new unit tests exercise the various permutations allowed for this
property, while a couple of new verification tests actually use it for
real to verify the model outputs are following the format as expected.
Unit tests:
`python -m pytest -s -v
tests/unit/providers/agents/meta_reference/test_openai_responses.py`
Verification tests:
```
llama stack run llama_stack/templates/together/run.yaml
pytest -s -vv 'tests/verifications/openai_api/test_responses.py' \
--base-url=http://localhost:8321/v1/openai/v1 \
--model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
Note that the verification tests can only be run with a real Llama Stack
server (as opposed to using the library client via
`--provider=stack:together`) because the Llama Stack python client is
not yet updated to accept this text field.
Signed-off-by: Ben Browning <bbrownin@redhat.com>
I think the implementation needs more simplification. Spent way too much
time trying to get the tests pass with models not co-operating :(
Finally had to switch claude-sonnet to get things to pass reliably.
### Test Plan
```
export TAVILY_SEARCH_API_KEY=...
export OPENAI_API_KEY=...
uv run pytest -p no:warnings \
-s -v tests/verifications/openai_api/test_responses.py \
--provider=stack:starter \
--model openai/gpt-4o
```
# What does this PR do?
Followup of https://github.com/meta-llama/llama-stack/pull/2287. We must
use `--group` when running commands with uv.
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Signed-off-by: Sébastien Han <seb@redhat.com>
This adds initial streaming support to the Responses API.
This PR makes sure that the _first_ inference call made to chat
completions streams out.
There's more to be done:
- tool call output tokens need to stream out when possible
- we need to loop through multiple rounds of inference and they all need
to stream out.
## Test Plan
Added a test. Executed as:
```
FIREWORKS_API_KEY=... \
pytest -s -v 'tests/verifications/openai_api/test_responses.py' \
--provider=stack:fireworks --model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
Then, started a llama stack fireworks distro and tested against it like
this:
```
OPENAI_API_KEY=blah \
pytest -s -v 'tests/verifications/openai_api/test_responses.py' \
--base-url http://localhost:8321/v1/openai/v1 \
--model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
# What does this PR do?
This is not part of the official OpenAI API, but we'll use this for the
logs UI.
In order to support more filtering options, I'm adopting the newly
introduced sql store in in place of the kv store.
## Test Plan
Added integration/unit tests.
Having to run (and re-run) a server while running verifications can be
annoying while you are iterating on code. This makes it so you can use
the library client -- and because it is OpenAI client compatible, it all
works.
## Test Plan
```
pytest -s -v tests/verifications/openai_api/test_responses.py \
--provider=stack:together \
--model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
Prevent it from returning results about
'LT Wright Maverick Scout' knives. Ultimatly
we want the word "model" in the returned results
putting llm in the search term make this more likely.
Closes: #2150
Signed-off-by: Derek Higgins <derekh@redhat.com>
# What does this PR do?
This is a combination of what was previously 3 separate PRs - #2069,
#2075, and #2083. It turns out all 3 of those are needed to land a
working function calling Responses implementation. The web search
builtin tool was already working, but this wires in support for custom
function calling.
I ended up combining all three into one PR because they all had lots of
merge conflicts, both with each other but also with #1806 that just
landed. And, because landing any of them individually would have only
left a partially working implementation merged.
The new things added here are:
* Storing of input items from previous responses and restoring of those
input items when adding previous responses to the conversation state
* Handling of multiple input item messages roles, not just "user"
messages.
* Support for custom tools passed into the Responses API to enable
function calling outside of just the builtin websearch tool.
Closes#2074Closes#2080
## Test Plan
### Unit Tests
Several new unit tests were added, and they all pass. Ran via:
```
python -m pytest -s -v tests/unit/providers/agents/meta_reference/test_openai_responses.py
```
### Responses API Verification Tests
I ran our verification run.yaml against multiple providers to ensure we
were getting a decent pass rate. Specifically, I ensured the new custom
tool verification test passed across multiple providers and that the
multi-turn examples passed across at least some of the providers (some
providers struggle with the multi-turn workflows still).
Running the stack setup for verification testing:
```
llama stack run --image-type venv tests/verifications/openai-api-verification-run.yaml
```
Together, passing 100% as an example:
```
pytest -s -v 'tests/verifications/openai_api/test_responses.py' --provider=together-llama-stack
```
## Documentation
We will need to start documenting the OpenAI APIs, but for now the
Responses stuff is still rapidly evolving so delaying that.
---------
Signed-off-by: Derek Higgins <derekh@redhat.com>
Signed-off-by: Ben Browning <bbrownin@redhat.com>
Co-authored-by: Derek Higgins <derekh@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
reduces duplication and centralizes information to be easier to find for
contributors
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
# What does this PR do?
The goal of this PR is code base modernization.
Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)
Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Add several new pre-commit hooks to improve code quality and security:
- no-commit-to-branch: prevent direct commits to protected branches like
`main`
- check-yaml: validate YAML files
- detect-private-key: prevent accidental commit of private keys
- requirements-txt-fixer: maintain consistent requirements.txt format
and sorting
- mixed-line-ending: enforce LF line endings to avoid mixed line endings
- check-executables-have-shebangs: ensure executable scripts have
shebangs
- check-json: validate JSON files
- check-shebang-scripts-are-executable: verify shebang scripts are
executable
- check-symlinks: validate symlinks and report broken ones
- check-toml: validate TOML files mainly for pyproject.toml
The respective fixes have been included.
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
The telemetry provider configs is the only one who leverages the env var
`SQLITE_DB_PATH` for pointing to persistent data in the respective
templates, whereas usually `SQLITE_STORE_DIR` is used.
This PR modifies the `sqlite_db_path` in various telemetry configuration
files to use the environment variable `SQLITE_STORE_DIR` instead of
`SQLITE_DB_PATH`. This change ensures that _only_ the SQLITE_STORE_DIR
needs to be set to point to a different persistence location for
providers.
All references to `SQLITE_DB_PATH` have been removed.
Another improvement could be to move `sqlite_db_path` to `db_path` in
the telemetry provider config, to align with the other provider
configurations. That could be done by another PR (if wanted).
# What does this PR do?
This provides an initial [OpenAI Responses
API](https://platform.openai.com/docs/api-reference/responses)
implementation. The API is not yet complete, and this is more a
proof-of-concept to show how we can store responses in our key-value
stores and use them to support the Responses API concepts like
`previous_response_id`.
## Test Plan
I've added a new
`tests/integration/openai_responses/test_openai_responses.py` as part of
a test-driven development for this new API. I'm only testing this
locally with the remote-vllm provider for now, but it should work with
any of our inference providers since the only API it requires out of the
inference provider is the `openai_chat_completion` endpoint.
```
VLLM_URL="http://localhost:8000/v1" \
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
llama stack build --template remote-vllm --image-type venv --run
```
```
LLAMA_STACK_CONFIG="http://localhost:8321" \
python -m pytest -v \
tests/integration/openai_responses/test_openai_responses.py \
--text-model "meta-llama/Llama-3.2-3B-Instruct"
```
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
When clients called the Open AI API with invalid input that wasn't
caught by our own Pydantic API validation but instead only caught by the
backend inference provider, that backend inference provider was
returning a HTTP 400 error. However, we were wrapping that into a HTTP
500 error, obfuscating the actual issue from calling clients and
triggering OpenAI client retry logic.
This change adjusts our existing `translate_exception` method in
`server.py` to wrap `openai.BadRequestError` as HTTP 400 errors, passing
through the string representation of the error message to the calling
user so they can see the actual input validation error and correct it. I
tried changing this in a few other places, but ultimately
`translate_exception` was the only real place to handle this for both
streaming and non-streaming requests across all inference providers that
use the OpenAI server APIs.
This also tightens up our validation a bit for the OpenAI chat
completions API, to catch empty `messages` parameters, invalid
`tool_choice` parameters, invalid `tools` items, or passing
`tool_choice` when `tools` isn't given.
Lastly, this extends our OpenAI API chat completions verifications to
also check for consistent input validation across providers. Providers
behind Llama Stack should automatically pass all the new tests due to
the input validation added here, but some of the providers fail this
test when not run behind Llama Stack due to differences in how they
handle input validation and errors.
(Closes#1951)
## Test Plan
To test this, start an OpenAI API verification stack:
```
llama stack run --image-type venv tests/verifications/openai-api-verification-run.yaml
```
Then, run the new verification tests with your provider(s) of choice:
```
python -m pytest -s -v \
tests/verifications/openai_api/test_chat_completion.py \
--provider openai-llama-stack
python -m pytest -s -v \
tests/verifications/openai_api/test_chat_completion.py \
--provider together-llama-stack
```
Signed-off-by: Ben Browning <bbrownin@redhat.com>
Test plan:
python tests/verifications/generate_report.py --providers
fireworks,together,llama_meta_ref,openai
Co-authored-by: Eric Huang <erichuang@fb.com>
# What does this PR do?
## Test Plan
(myenv) ➜ llama-stack python tests/verifications/generate_report.py
--providers fireworks,together,openai --run-tests
f27f617629/tests/verifications/REPORT.md
# What does this PR do?
TLDR: Changes needed to get 100% passing tests for OpenAI API
verification tests when run against Llama Stack with the `together`,
`fireworks`, and `openai` providers. And `groq` is better than before,
at 88% passing.
This cleans up the OpenAI API support for image message types
(specifically `image_url` types) and handling of the `response_format`
chat completion parameter. Both of these required a few more Pydantic
model definitions in our Inference API, just to move from the
not-quite-right stubs I had in place to something fleshed out to match
the actual OpenAI API specs.
As part of testing this, I also found and fixed a bug in the litellm
implementation of openai_completion and openai_chat_completion, so the
providers based on those should actually be working now.
The method `prepare_openai_completion_params` in
`llama_stack/providers/utils/inference/openai_compat.py` was improved to
actually recursively clean up input parameters, including handling of
lists, dicts, and dumping of Pydantic models to dicts. These changes
were required to get to 100% passing tests on the OpenAI API
verification against the `openai` provider.
With the above, the together.ai provider was passing as well as it is
without Llama Stack. But, since we have Llama Stack in the middle, I
took the opportunity to clean up the together.ai provider so that it now
also passes the OpenAI API spec tests we have at 100%. That means
together.ai is now passing our verification test better when using an
OpenAI client talking to Llama Stack than it is when hitting together.ai
directly, without Llama Stack in the middle.
And, another round of work for Fireworks to improve translation of
incoming OpenAI chat completion requests to Llama Stack chat completion
requests gets the fireworks provider passing at 100%. The server-side
fireworks.ai tool calling support with OpenAI chat completions and Llama
4 models isn't great yet, but by pointing the OpenAI clients at Llama
Stack's API we can clean things up and get everything working as
expected for Llama 4 models.
## Test Plan
### OpenAI API Verification Tests
I ran the OpenAI API verification tests as below and 100% of the tests
passed.
First, start a Llama Stack server that runs the `openai` provider with
the `gpt-4o` and `gpt-4o-mini` models deployed. There's not a template
setup to do this out of the box, so I added a
`tests/verifications/openai-api-verification-run.yaml` to do this.
First, ensure you have the necessary API key environment variables set:
```
export TOGETHER_API_KEY="..."
export FIREWORKS_API_KEY="..."
export OPENAI_API_KEY="..."
```
Then, run a Llama Stack server that serves up all these providers:
```
llama stack run \
--image-type venv \
tests/verifications/openai-api-verification-run.yaml
```
Finally, generate a new verification report against all these providers,
both with and without the Llama Stack server in the middle.
```
python tests/verifications/generate_report.py \
--run-tests \
--provider \
together \
fireworks \
groq \
openai \
together-llama-stack \
fireworks-llama-stack \
groq-llama-stack \
openai-llama-stack
```
You'll see that most of the configurations with Llama Stack in the
middle now pass at 100%, even though some of them do not pass at 100%
when hitting the backend provider's API directly with an OpenAI client.
### OpenAI Completion Integration Tests with vLLM:
I also ran the smaller `test_openai_completion.py` test suite (that's
not yet merged with the verification tests) on multiple of the
providers, since I had to adjust the method signature of
openai_chat_completion a bit and thus had to touch lots of these
providers to match. Here's the tests I ran there, all passing:
```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run
```
in another terminal
```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct"
```
### OpenAI Completion Integration Tests with ollama
```
INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run
```
in another terminal
```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0"
```
### OpenAI Completion Integration Tests with together.ai
```
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" llama stack build --template together --image-type venv --run
```
in another terminal
```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct-Turbo"
```
### OpenAI Completion Integration Tests with fireworks.ai
```
INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" llama stack build --template fireworks --image-type venv --run
```
in another terminal
```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.1-8B-Instruct"
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
## Test Plan
(myenv) ➜ llama-stack python tests/verifications/generate_report.py
--providers fireworks,together,openai --run-tests
# What does this PR do?
- provider and their models now live in config.yaml
- better distinguish different cases within a test
- add model key to surface provider's model_id
- include example command to rerun single test case
## Test Plan
<img width="1173" alt="image"
src="https://github.com/user-attachments/assets/b414baf0-c768-451f-8c3b-c2905cf36fac"
/>