# What does this PR do?
remove unused chat_completion implementations
vllm features ported -
- requires max_tokens be set, use config value
- set tool_choice to none if no tools provided
## Test Plan
ci
# What does this PR do?
closes#3268closes#3498
When resuming from previous response ID, currently we attempt to convert
from the stored responses input to chat completion messages, which is
not always possible, e.g. for tool calls where some data is lost once
converted from chat completion message to repsonses input format.
This PR stores the chat completion messages that correspond to the
_last_ call to chat completion, which is sufficient to be resumed from
in the next responses API call, where we load these saved messages and
skip conversion entirely.
Separate issue to optimize storage:
https://github.com/llamastack/llama-stack/issues/3646
## Test Plan
existing CI tests
This is a sweeping change to clean up some gunk around our "Tool"
definitions.
First, we had two types `Tool` and `ToolDef`. The first of these was a
"Resource" type for the registry but we had stopped registering tools
inside the Registry long back (and only registered ToolGroups.) The
latter was for specifying tools for the Agents API. This PR removes the
former and adds an optional `toolgroup_id` field to the latter.
Secondly, as pointed out by @bbrowning in
https://github.com/llamastack/llama-stack/pull/3003#issuecomment-3245270132,
we were doing a lossy conversion from a full JSON schema from the MCP
tool specification into our ToolDefinition to send it to the model.
There is no necessity to do this -- we ourselves aren't doing any
execution at all but merely passing it to the chat completions API which
supports this. By doing this (and by doing it poorly), we encountered
limitations like not supporting array items, or not resolving $refs,
etc.
To fix this, we replaced the `parameters` field by `{ input_schema,
output_schema }` which can be full blown JSON schemas.
Finally, there were some types in our llama-related chat format
conversion which needed some cleanup. We are taking this opportunity to
clean those up.
This PR is a substantial breaking change to the API. However, given our
window for introducing breaking changes, this suits us just fine. I will
be landing a concurrent `llama-stack-client` change as well since API
shapes are changing.
# What does this PR do?
First step towards cleaning up the API reference section of the docs.
- Separates API reference into 3 sections: stable (`v1`), experimental (`v1alpha` and `v1beta`), and deprecated (`deprecated=True`)
- Each section is accessible via the dropdown menu and `docs/api-overview`
<img width="1237" height="321" alt="Screenshot 2025-09-30 at 5 47 30 PM" src="https://github.com/user-attachments/assets/fe0e498c-b066-46ed-a48e-4739d3b6724c" />
<img width="860" height="510" alt="Screenshot 2025-09-30 at 5 47 49 PM" src="https://github.com/user-attachments/assets/a92a8d8c-94bf-42d5-9f5b-b47bb2b14f9c" />
- Deprecated APIs: Added styling to the sidebar, and a notice on the endpoint pages
<img width="867" height="428" alt="Screenshot 2025-09-30 at 5 47 43 PM" src="https://github.com/user-attachments/assets/9e6e050d-c782-461b-8084-5ff6496d7bd9" />
Closes#3628
TODO in follow-up PRs:
- Add the ability to annotate API groups with supplementary content (so we can have longer descriptions of complex APIs like Responses)
- Clean up docstrings to show API endpoints (or short semantic titles) in the sidebar
## Test Plan
- Local testing
- Made sure API conformance test still passes
# What does this PR do?
level the following APIs, keeping their old routes around as well until
0.4.0
1. datasetio to v1beta: used primarily by eval and training. Given that
training is v1alpha, and eval is v1alpha, datasetio is likely to change
in structure as real usages of the API spin up. Register,unregister, and
iter dataset is sparsely implemented meaning the shape of that route is
likely to change.
2. telemetry to v1alpha: telemetry has been going through many changes.
for example query_metrics was not even implemented until recently and
had to change its shape to work. putting this in v1beta will allow us to
fix functionality like OTEL, sqlite, etc. The routes themselves are set,
but the structure might change a bit
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
This PR adds support for the require_approval on an mcp tool definition
passed to create response in the Responses API. This allows the caller
to indicate whether they want to approve calls to that server, or let
them be called without approval.
Closes#3443
## Test Plan
Tested both approval and denial.
Added automated integration test for both cases.
---------
Signed-off-by: Gordon Sim <gsim@redhat.com>
Co-authored-by: Matthew Farrellee <matt@cs.wisc.edu>
# What does this PR do?
agents is likely to be deprecated in favor of responses. Lets level it
as alpha to indicate the lack of longterm support
keep v1 route for backwards compat.
Closes#3611
Signed-off-by: Charlie Doern <cdoern@redhat.com>
The `/v1/openai/v1` prefix is annoying and now unnecessary given our
clearer focus on how to think about the API surface.
Let's kill it for the 0.3.0 update.
To make client-side changes feasible, we will do this in two parts. This
part adds a new route (sans `/openai/v1`) so the existing client
continues to work since the server supports both.
The next PR will be client-side (Stainless) changes which I will be
making shortly.
The final PR will remove the `/openai/v1` routes.
Note that all these changes will happen rapidly within this release
cycle. The entire set _will be backwards incompatible_.
# What does this PR do?
inference/rerank is the one route in the API intended to not be
deprecated. Level it as v1alpha.
Additionally, remove `experimental` and opt to instead use `v1alpha`
which itself implies an experimental state based on the original
proposal
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
Add items and title to ToolParameter/ToolParamDefinition. Adding items
will resolve the issue that occurs with Gemini LLM when an MCP tool has
array-type properties.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Unite test cases will be added.
---------
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Kai Wu <kaiwu@meta.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
unpublish (make unavailable to users) the following apis -
- `/v1/inference/completion`, replaced by `/v1/openai/v1/completions`
- `/v1/inference/chat-completion`, replaced by
`/v1/openai/v1/chat/completions`
- `/v1/inference/embeddings`, replaced by `/v1/openai/v1/embeddings`
- `/v1/inference/batch-completion`, replaced by `/v1/openai/v1/batches`
- `/v1/inference/batch-chat-completion`, replaced by
`/v1/openai/v1/batches`
note: the implementations are still available for internal use, e.g.
agents uses chat-completion.
# What does this PR do?
APIs removed:
- POST /v1/batch-inference/completion
- POST /v1/batch-inference/chat-completion
- POST /v1/inference/batch-completion
- POST /v1/inference/batch-chat-completion
note -
- batch-completion & batch-chat-completion were only implemented for
inference=inline::meta-reference
- batch-inference were not implemented
# What does this PR do?
Rather than have a single `LLAMA_STACK_VERSION`, we need to have a
`_V1`, `_V1ALPHA`, and `_V1BETA` constant.
This also necessitated addition of `level` to the `WebMethod` so that
routing can be handeled properly.
For backwards compat, the `v1` routes are being kept around and marked
as `deprecated`. When used, the server will log a deprecation warning.
Deprecation log:
<img width="1224" height="134" alt="Screenshot 2025-09-25 at 2 43 36 PM"
src="https://github.com/user-attachments/assets/0cc7c245-dafc-48f0-be99-269fb9a686f9"
/>
move:
1. post_training to `v1alpha` as it is under heavy development and not
near its final state
2. eval: job scheduling is not implemented. Relies heavily on the
datasetio API which is under development missing implementations of
specific routes indicating the structure of those routes might change.
Additionally eval depends on the `inference` API which is going to be
deprecated, eval will likely need a major API surface change to conform
to using completions properly
implements leveling in #3317
note: integration tests will fail until the SDK is regenerated with
v1alpha/inference as opposed to v1/inference
## Test Plan
existing tests should pass with newly generated schema. Conformance will
also pass as these routes are not the ones we currently test for
stability
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. -->
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
_[Stack 1/10] Docusaurus documentation migration_
Updates the file upload API documentation to use proper OpenAPI format for integer parameters. Replaces `<int>` with `{integer}` in the description of the `expires_after[seconds]` parameter across the HTML spec, YAML spec, and Python implementation.
## Test Plan
- docs/openapi_generator/run_openapi_generator.sh
<!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* -->
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR provides functionality for users to unregister ScoringFn and
Benchmark resources for `scoring` and `eval` APIs.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes#3051
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Updated integration and unit tests via CI workflow
# What does this PR do?
This PR adds support for OpenAI Prompts API.
Note, OpenAI does not explicitly expose the Prompts API but instead
makes it available in the Responses API and in the [Prompts
Dashboard](https://platform.openai.com/docs/guides/prompting#create-a-prompt).
I have added the following APIs:
- CREATE
- GET
- LIST
- UPDATE
- Set Default Version
The Set Default Version API is made available only in the Prompts
Dashboard and configures which prompt version is returned in the GET
(the latest version is the default).
Overall, the expected functionality in Responses will look like this:
```python
from openai import OpenAI
client = OpenAI()
response = client.responses.create(
prompt={
"id": "pmpt_68b0c29740048196bd3a6e6ac3c4d0e20ed9a13f0d15bf5e",
"version": "2",
"variables": {
"city": "San Francisco",
"age": 30,
}
}
)
```
### Resolves https://github.com/llamastack/llama-stack/issues/3276
## Test Plan
Unit tests added. Integration tests can be added after client
generation.
## Next Steps
1. Update Responses API to support Prompt API
2. I'll enhance the UI to implement the Prompt Dashboard.
3. Add cache for lower latency
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
Add Kubernetes authentication provider support
- Add KubernetesAuthProvider class for token validation using Kubernetes
SelfSubjectReview API
- Add KubernetesAuthProviderConfig with configurable API server URL, TLS
settings, and claims mapping
- Implement authentication via POST requests to
/apis/authentication.k8s.io/v1/selfsubjectreviews endpoint
- Add support for parsing Kubernetes SelfSubjectReview response format
to extract user information
- Add KUBERNETES provider type to AuthProviderType enum
- Update create_auth_provider factory function to handle 'kubernetes'
provider type
- Add comprehensive unit tests for KubernetesAuthProvider functionality
- Add documentation with configuration examples and usage instructions
The provider validates tokens by sending SelfSubjectReview requests to
the Kubernetes API server and extracts user information from the
userInfo structure in the response.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
What This Verifies:
Authentication header validation
Token validation with Kubernetes SelfSubjectReview and kubernetes server
API endpoint
Error handling for invalid tokens and HTTP errors
Request payload structure and headers
```
python -m pytest tests/unit/server/test_auth.py -k "kubernetes" -v
```
Signed-off-by: Akram Ben Aissi <akram.benaissi@gmail.com>
# What does this PR do?
closes https://github.com/llamastack/llama-stack/issues/3236
mypy considered our default implementations (raise NotImplementedError)
to be trivial. the result was we implemented the same stubs in
providers.
this change puts enough into the default impls so mypy considers them
non-trivial. this allows us to remove the duplicate implementations.
# What does this PR do?
Context: https://github.com/meta-llama/llama-stack/issues/2937
The API design is inspired by existing offerings, but not exactly the
same:
* `top_n` as the parameter to control number of results, instead of
`top_k`, since `n` is conventional to control number
* `truncation` bool instead of `max_token_per_doc`, since we should just
handle the truncation automatically depending on model capability,
instead of user setting the context length manually.
* `data` field in the response, to be consistent with other OpenAI APIs
(though they don't have a rerank API). Also, it is one less name to
learn in the API.
## Test Plan
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
Adds content part streaming events to the OpenAI-compatible Responses API to support more granular streaming of response content. This introduces:
1. New schema types for content parts: `OpenAIResponseContentPart` with variants for text output and refusals
2. New streaming event types:
- `OpenAIResponseObjectStreamResponseContentPartAdded` for when content parts begin
- `OpenAIResponseObjectStreamResponseContentPartDone` for when content parts complete
3. Implementation in the reference provider to emit these events during streaming responses. Also emits MCP arguments just like function call ones.
## Test Plan
Updated existing streaming tests to verify content part events are properly emitted
# What does this PR do?
To be compliant with model policies for LLAMA, just return the
categories as is from provider, we will lose the OAI compat in
moderations api response.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
`SAFETY_MODEL=llama-guard3:8b LLAMA_STACK_CONFIG=starter uv run pytest
-v tests/integration/safety/test_safety.py
--text-model=llama3.2:3b-instruct-fp16
--embedding-model=all-MiniLM-L6-v2 --safety-shield=ollama`
Well our Responses tests use it so we better include it in the API, no?
I discovered it because I want to make sure `llama-stack-client` can be
used always instead of `openai-python` as the client (we do want to be
_truly_ compatible.)
# What does this PR do?
This PR adds Open AI Compatible moderations api. Currently only
implementing for llama guard safety provider
Image support, expand to other safety providers and Deprecation of
run_shield will be next steps.
## Test Plan
Added 2 new tests for safe/ unsafe text prompt examples for the new open
ai compatible moderations api usage
`SAFETY_MODEL=llama-guard3:8b LLAMA_STACK_CONFIG=starter uv run pytest
-v tests/integration/safety/test_safety.py
--text-model=llama3.2:3b-instruct-fp16
--embedding-model=all-MiniLM-L6-v2 --safety-shield=ollama`
(Had some issue with previous PR
https://github.com/meta-llama/llama-stack/pull/2994 while updating and
accidentally close it , reopened new one )
# What does this PR do?
1. Introduce new base custom exception class `ResourceNotFoundError`
2. All other "not found" exception classes now inherit from
`ResourceNotFoundError`
Closes#3030
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
Extend the Shields Protocol and implement the capability to unregister
previously registered shields and CLI for shields management.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes#2581
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
First of, test API for shields
1. Install and start Ollama:
`ollama serve`
2. Pull Llama Guard Model in Ollama:
`ollama pull llama-guard3:8b`
3. Configure env variables:
```
export ENABLE_OLLAMA=ollama
export OLLAMA_URL=http://localhost:11434
```
4. Build Llama Stack distro:
`llama stack build --template starter --image-type venv `
5. Start Llama Stack server:
`llama stack run starter --port 8321`
6. Check if Ollama model is available:
`curl -X GET http://localhost:8321/v1/models | jq '.data[] |
select(.provider_id=="ollama")'`
7. Register a new Shield using Ollama provider:
```
curl -X POST http://localhost:8321/v1/shields \
-H "Content-Type: application/json" \
-d '{
"shield_id": "test-shield",
"provider_id": "llama-guard",
"provider_shield_id": "ollama/llama-guard3:8b",
"params": {}
}'
```
`{"identifier":"test-shield","provider_resource_id":"ollama/llama-guard3:8b","provider_id":"llama-guard","type":"shield","owner":{"principal":"","attributes":{}},"params":{}}%
`
8. Check if shield was registered:
`curl -X GET http://localhost:8321/v1/shields/test-shield`
`{"identifier":"test-shield","provider_resource_id":"ollama/llama-guard3:8b","provider_id":"llama-guard","type":"shield","owner":{"principal":"","attributes":{}},"params":{}}%
`
9. Run shield:
```
curl -X POST http://localhost:8321/v1/safety/run-shield \
-H "Content-Type: application/json" \
-d '{
"shield_id": "test-shield",
"messages": [
{
"role": "user",
"content": "How can I hack into someone computer?"
}
],
"params": {}
}'
```
`{"violation":{"violation_level":"error","user_message":"I can't answer
that. Can I help with something
else?","metadata":{"violation_type":"S2"}}}% `
10. Unregister shield:
`curl -X DELETE http://localhost:8321/v1/shields/test-shield`
`null% `
11. Verify shield was deleted:
`curl -X GET http://localhost:8321/v1/shields/test-shield`
`{"detail":"Invalid value: Shield 'test-shield' not found"}%`
All tests passed ✅
```
========================================================================== 430 passed, 194 warnings in 19.54s ==========================================================================
/Users/iamiller/GitHub/llama-stack/.venv/lib/python3.12/site-packages/litellm/llms/custom_httpx/async_client_cleanup.py:78: RuntimeWarning: coroutine 'close_litellm_async_clients' was never awaited
loop.close()
RuntimeWarning: Enable tracemalloc to get the object allocation traceback
Wrote HTML report to htmlcov-3.12/index.html
```
# What does this PR do?
1. Creates a new `SessionNotFoundError` class
2. Implements the new class where appropriate
Relates to #2379
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
# What does this PR do?
1. Creates a new `ToolGroupNotFoundError` class
2. Implements the new class where appropriate
Relates to #2379
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
# What does this PR do?
This PR (1) enables the files API for Weaviate and (2) enables
integration tests for Weaviate, which adds a docker container to the
github action.
This PR also handles a couple of edge cases for in creating the
collection and ensuring the tests all pass.
## Test Plan
CI enabled
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This PR focuses on improving the developer experience by adding
comprehensive docstrings to the API data models across the Llama Stack.
These docstrings provide detailed explanations for each model and its
fields, making the API easier to understand and use.
**Key changes:**
- **Added Docstrings:** Added reST formatted docstrings to Pydantic
models in the `llama_stack/apis/` directory. This includes models for:
- Agents (`agents.py`)
- Benchmarks (`benchmarks.py`)
- Datasets (`datasets.py`)
- Inference (`inference.py`)
- And many other API modules.
- **OpenAPI Spec Update:** Regenerated the OpenAPI specification
(`docs/_static/llama-stack-spec.yaml` and
`docs/_static/llama-stack-spec.html`) to include the new docstrings.
This will be reflected in the API documentation, providing richer
information to users.
**Impact:**
- Developers using the Llama Stack API will have a better understanding
of the data structures.
- The auto-generated API documentation is now more informative.
---------
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>