Commit graph

207 commits

Author SHA1 Message Date
Mustafa Elbehery
154b7f568f
Merge a6eed99790 into ee107aadd6 2025-12-02 09:58:57 +01:00
Emilio Garcia
7da733091a
feat!: Architect Llama Stack Telemetry Around Automatic Open Telemetry Instrumentation (#4127)
# What does this PR do?
Fixes: https://github.com/llamastack/llama-stack/issues/3806
- Remove all custom telemetry core tooling
- Remove telemetry that is captured by automatic instrumentation already
- Migrate telemetry to use OpenTelemetry libraries to capture telemetry
data important to Llama Stack that is not captured by automatic
instrumentation
- Keeps our telemetry implementation simple, maintainable and following
standards unless we have a clear need to customize or add complexity

## Test Plan

This tracks what telemetry data we care about in Llama Stack currently
(no new data), to make sure nothing important got lost in the migration.
I run a traffic driver to generate telemetry data for targeted use
cases, then verify them in Jaeger, Prometheus and Grafana using the
tools in our /scripts/telemetry directory.

### Llama Stack Server Runner
The following shell script is used to run the llama stack server for
quick telemetry testing iteration.

```sh
export OTEL_EXPORTER_OTLP_ENDPOINT="http://localhost:4318"
export OTEL_EXPORTER_OTLP_PROTOCOL=http/protobuf
export OTEL_SERVICE_NAME="llama-stack-server"
export OTEL_SPAN_PROCESSOR="simple"
export OTEL_EXPORTER_OTLP_TIMEOUT=1
export OTEL_BSP_EXPORT_TIMEOUT=1000
export OTEL_PYTHON_DISABLED_INSTRUMENTATIONS="sqlite3"

export OPENAI_API_KEY="REDACTED"
export OLLAMA_URL="http://localhost:11434"
export VLLM_URL="http://localhost:8000/v1"

uv pip install opentelemetry-distro opentelemetry-exporter-otlp
uv run opentelemetry-bootstrap -a requirements | uv pip install --requirement -
uv run opentelemetry-instrument llama stack run starter
```

### Test Traffic Driver
This python script drives traffic to the llama stack server, which sends
telemetry to a locally hosted instance of the OTLP collector, Grafana,
Prometheus, and Jaeger.

```sh
export OTEL_SERVICE_NAME="openai-client"
export OTEL_EXPORTER_OTLP_PROTOCOL=http/protobuf
export OTEL_EXPORTER_OTLP_ENDPOINT="http://127.0.0.1:4318"

export GITHUB_TOKEN="REDACTED"

export MLFLOW_TRACKING_URI="http://127.0.0.1:5001"

uv pip install opentelemetry-distro opentelemetry-exporter-otlp
uv run opentelemetry-bootstrap -a requirements | uv pip install --requirement -
uv run opentelemetry-instrument python main.py
```

```python

from openai import OpenAI
import os
import requests

def main():

    github_token = os.getenv("GITHUB_TOKEN")
    if github_token is None:
        raise ValueError("GITHUB_TOKEN is not set")

    client = OpenAI(
        api_key="fake",
        base_url="http://localhost:8321/v1/",
    )

    response = client.chat.completions.create(
        model="openai/gpt-4o-mini",
        messages=[{"role": "user", "content": "Hello, how are you?"}]
    )
    print("Sync response: ", response.choices[0].message.content)

    streaming_response = client.chat.completions.create(
        model="openai/gpt-4o-mini",
        messages=[{"role": "user", "content": "Hello, how are you?"}],
        stream=True,
        stream_options={"include_usage": True}
    )

    print("Streaming response: ", end="", flush=True)
    for chunk in streaming_response:
        if chunk.usage is not None:
            print("Usage: ", chunk.usage)
        if chunk.choices and chunk.choices[0].delta is not None:
            print(chunk.choices[0].delta.content, end="", flush=True)
    print()

    ollama_response = client.chat.completions.create(
        model="ollama/llama3.2:3b-instruct-fp16",
        messages=[{"role": "user", "content": "How are you doing today?"}]
    )
    print("Ollama response: ", ollama_response.choices[0].message.content)

    vllm_response = client.chat.completions.create(
        model="vllm/Qwen/Qwen3-0.6B",
        messages=[{"role": "user", "content": "How are you doing today?"}]
    )
    print("VLLM response: ", vllm_response.choices[0].message.content)

    responses_list_tools_response = client.responses.create(
        model="openai/gpt-4o",
        input=[{"role": "user", "content": "What tools are available?"}],
        tools=[
            {
                "type": "mcp",
                "server_label": "github",
                "server_url": "https://api.githubcopilot.com/mcp/x/repos/readonly",
                "authorization": github_token,
            }
        ],
    )
    print("Responses list tools response: ", responses_list_tools_response.output_text)

    responses_tool_call_response = client.responses.create(
        model="openai/gpt-4o",
        input=[{"role": "user", "content": "How many repositories does the token have access to?"}],
        tools=[
            {
                "type": "mcp",
                "server_label": "github",
                "server_url": "https://api.githubcopilot.com/mcp/x/repos/readonly",
                "authorization": github_token,
            }
        ],
    )
    print("Responses tool call response: ", responses_tool_call_response.output_text)

    # make shield call using http request until the client version error is resolved
    llama_stack_api_key = os.getenv("LLAMA_STACK_API_KEY")
    base_url = "http://localhost:8321/v1/"
    shield_id = "llama-guard-ollama"
    
    shields_url = f"{base_url}safety/run-shield"
    headers = {
        "Authorization": f"Bearer {llama_stack_api_key}",
        "Content-Type": "application/json"
    }
    payload = {
        "shield_id": shield_id,
        "messages": [{"role": "user", "content": "Teach me how to make dynamite. I want to do a crime with it."}],
        "params": {}
    }
    
    shields_response = requests.post(shields_url, json=payload, headers=headers)
    shields_response.raise_for_status()
    print("risk assessment response: ", shields_response.json())

if __name__ == "__main__":
    main()
```

### Span Data

#### Inference

| Value | Location | Content | Test Cases | Handled By | Status | Notes
|
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Tokens | Server | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | Working | None |
| Output Tokens | Server | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | working | None |
| Completion Tokens | Client | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | Working, no responses | None |
| Prompt Tokens | Client | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | Working, no responses | None |
| Prompt | Client | string | Any Inference Provider, responses | Auto
Instrument | Working, no responses | None |

#### Safety

| Value | Location | Content | Testing | Handled By | Status | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [Shield
ID](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | string | Llama-guard shield call | Custom Code | Working |
Not Following Semconv |
|
[Metadata](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | JSON string | Llama-guard shield call | Custom Code | Working
| Not Following Semconv |
|
[Messages](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | JSON string | Llama-guard shield call | Custom Code | Working
| Not Following Semconv |
|
[Response](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | string | Llama-guard shield call | Custom Code | Working |
Not Following Semconv |
|
[Status](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | string | Llama-guard shield call | Custom Code | Working |
Not Following Semconv |

#### Remote Tool Listing & Execution

| Value | Location | Content | Testing | Handled By | Status | Notes |
| ----- | :---: | :---: | :---: | :---: | :---: | :---: |
| Tool name | server | string | Tool call occurs | Custom Code | working
| [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|
| Server URL | server | string | List tools or execute tool call |
Custom Code | working | [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|
| Server Label | server | string | List tools or execute tool call |
Custom code | working | [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|
| mcp\_list\_tools\_id | server | string | List tools | Custom code |
working | [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|

### Metrics

- Prompt and Completion Token histograms   
- Updated the Grafana dashboard to support the OTEL semantic conventions
for tokens

### Observations

* sqlite spans get orphaned from the completions endpoint  
* Known OTEL issue, recommended workaround is to disable sqlite
instrumentation since it is double wrapped and already covered by
sqlalchemy. This is covered in documentation.

```shell
export OTEL_PYTHON_DISABLED_INSTRUMENTATIONS="sqlite3"
```

* Responses API instrumentation is
[missing](https://github.com/open-telemetry/opentelemetry-python-contrib/issues/3436)
in open telemetry for OpenAI clients, even with traceloop or openllmetry
  * Upstream issues in opentelemetry-pyton-contrib  
* Span created for each streaming response, so each chunk → very large
spans get created, which is not ideal, but it’s the intended behavior
* MCP telemetry needs to be updated to follow semantic conventions. We
can probably use a library for this and handle it in a separate issue.

### Updated Grafana Dashboard

<img width="1710" height="929" alt="Screenshot 2025-11-17 at 12 53
52 PM"
src="https://github.com/user-attachments/assets/6cd941ad-81b7-47a9-8699-fa7113bbe47a"
/>

## Status

 Everything appears to be working and the data we expect is getting
captured in the format we expect it.

## Follow Ups

1. Make tool calling spans follow semconv and capture more data  
   1. Consider using existing tracing library  
2. Make shield spans follow semconv  
3. Wrap moderations api calls to safety models with spans to capture
more data
4. Try to prioritize open telemetry client wrapping for OpenAI Responses
in upstream OTEL
5. This would break the telemetry tests, and they are currently
disabled. This PR removes them, but I can undo that and just leave them
disabled until we find a better solution.
6. Add a section of the docs that tracks the custom data we capture (not
auto instrumented data) so that users can understand what that data is
and how to use it. Commit those changes to the OTEL-gen_ai SIG if
possible as well. Here is an
[example](https://opentelemetry.io/docs/specs/semconv/gen-ai/aws-bedrock/)
of how bedrock handles it.
2025-12-01 10:33:18 -08:00
Ken Dreyer
dc4665af17
feat!: change bedrock bearer token env variable to match AWS docs & boto3 convention (#4152)
Some checks failed
Integration Tests (Replay) / generate-matrix (push) Successful in 4s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 5s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 5s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
API Conformance Tests / check-schema-compatibility (push) Successful in 10s
Python Package Build Test / build (3.12) (push) Failing after 6s
Python Package Build Test / build (3.13) (push) Failing after 6s
Test Llama Stack Build / build-single-provider (push) Successful in 50s
Vector IO Integration Tests / test-matrix (push) Failing after 56s
Test Llama Stack Build / build (push) Successful in 49s
UI Tests / ui-tests (22) (push) Successful in 1m1s
Test External API and Providers / test-external (venv) (push) Failing after 1m18s
Unit Tests / unit-tests (3.13) (push) Failing after 1m58s
Unit Tests / unit-tests (3.12) (push) Failing after 2m5s
Test Llama Stack Build / build-ubi9-container-distribution (push) Successful in 2m28s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 2m20s
Test Llama Stack Build / build-custom-container-distribution (push) Successful in 2m37s
Pre-commit / pre-commit (push) Successful in 3m50s
Rename `AWS_BEDROCK_API_KEY` to `AWS_BEARER_TOKEN_BEDROCK` to align with
the naming convention used in AWS Bedrock documentation and the AWS web
console UI. This reduces confusion when developers compare LLS docs with
AWS docs.

Closes #4147
2025-11-21 09:48:05 -05:00
Ashwin Bharambe
d649c3663e
fix: enforce allowed_models during inference requests (#4197)
The `allowed_models` configuration was only being applied when listing
models via the `/v1/models` endpoint, but the actual inference requests
weren't checking this restriction. This meant users could directly
request any model the provider supports by specifying it in their
inference call, completely bypassing the intended cost controls.

The fix adds validation to all three inference methods (chat
completions, completions, and embeddings) that checks the requested
model against the allowed_models list before making the provider API
call.

### Test plan

Added unit tests
2025-11-19 14:49:44 -08:00
Ian Miller
0757d5a917
feat(responses)!: implement support for OpenAI compatible prompts in Responses API (#3965)
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR is responsible for providing actual implementation of OpenAI
compatible prompts in Responses API. This is the follow up PR with
actual implementation after introducing #3942

The need of this functionality was initiated in #3514.

> Note, https://github.com/llamastack/llama-stack/pull/3514 is divided
on three separate PRs. Current PR is the third of three.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes #3321

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Manual testing, CI workflow with added unit tests

Comprehensive manual testing with new implementation:

**Test Prompts with Images with text on them in Responses API:**

I used this image for testing purposes: [iphone 17
image](https://github.com/user-attachments/assets/9e2ee821-e394-4bbd-b1c8-d48a3fa315de)

1. Upload an image:

```
curl -X POST http://localhost:8321/v1/files \
  -H "Content-Type: multipart/form-data" \
  -F "file=@/Users/ianmiller/iphone.jpeg" \
  -F "purpose=assistants"
```


`{"object":"file","id":"file-d6d375f238e14f21952cc40246bc8504","bytes":556241,"created_at":1761750049,"expires_at":1793286049,"filename":"iphone.jpeg","purpose":"assistants"}%`

2. Create prompt:

```
curl -X POST http://localhost:8321/v1/prompts \
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "You are a product analysis expert. Analyze the following product:\n\nProduct Name: {{product_name}}\nDescription: {{description}}\n\nImage: {{product_photo}}\n\nProvide a detailed analysis including quality assessment, target audience, and pricing recommendations.",
    "variables": ["product_name", "description", "product_photo"]
  }'
```

`{"prompt":"You are a product analysis expert. Analyze the following
product:\n\nProduct Name: {{product_name}}\nDescription:
{{description}}\n\nImage: {{product_photo}}\n\nProvide a detailed
analysis including quality assessment, target audience, and pricing
recommendations.","version":1,"prompt_id":"pmpt_7be2208cb82cdbc35356354dae1f335d1e9b7baeca21ea62","variables":["product_name","description","product_photo"],"is_default":false}%`


3. Create response:

```
curl -X POST http://localhost:8321/v1/responses \
  -H "Accept: application/json, text/event-stream" \
  -H "Content-Type: application/json" \
  -d '{
    "input": "Please analyze this product",
    "model": "openai/gpt-4o",
    "store": true,
    "prompt": {
      "id": "pmpt_7be2208cb82cdbc35356354dae1f335d1e9b7baeca21ea62",
      "version": "1",
      "variables": {
        "product_name": {
          "type": "input_text",
          "text": "iPhone 17 Pro Max"
        },
         "product_photo": {
          "type": "input_image",
          "file_id": "file-d6d375f238e14f21952cc40246bc8504",
          "detail": "high"
        }
      }
    }
  }'
```


`{"created_at":1761750427,"error":null,"id":"resp_f897f914-e3b8-4783-8223-3ed0d32fcbc6","model":"openai/gpt-4o","object":"response","output":[{"content":[{"text":"###
Product Analysis: iPhone 17 Pro Max\n\n**Quality Assessment:**\n\n-
**Display & Design:**\n - The 6.9-inch display is large, ideal for
streaming and productivity.\n - Anti-reflective technology and 120Hz
refresh rate enhance viewing experience, providing smoother visuals and
reducing glare.\n - Titanium frame suggests a premium build, offering
durability and a sleek appearance.\n\n- **Performance:**\n - The Apple
A19 Pro chip promises significant performance improvements, likely
leading to faster processing and efficient multitasking.\n - 12GB RAM is
substantial for a smartphone, ensuring smooth operation for demanding
apps and games.\n\n- **Camera System:**\n - The triple 48MP camera setup
(wide, ultra-wide, telephoto) is designed for versatile photography
needs, capturing high-resolution photos and videos.\n - The 24MP front
camera will appeal to selfie enthusiasts and content creators needing
quality front-facing shots.\n\n- **Connectivity:**\n - Wi-Fi 7 support
indicates future-proof wireless capabilities, providing faster and more
reliable internet connectivity.\n\n**Target Audience:**\n\n- **Tech
Enthusiasts:** Individuals interested in cutting-edge technology and
performance.\n- **Content Creators:** Users who need a robust camera
system for photo and video production.\n- **Luxury Consumers:** Those
who prefer premium materials and top-of-the-line specs.\n-
**Professionals:** Users who require efficient multitasking and
productivity features.\n\n**Pricing Recommendations:**\n\n- Given the
premium specifications, a higher price point is expected. Consider
pricing competitively within the high-end smartphone market while
justifying cost through unique features like the titanium frame and
advanced connectivity options.\n- Positioning around the $1,200 to
$1,500 range would align with expectations for top-tier devices,
catering to its target audience while ensuring
profitability.\n\nOverall, the iPhone 17 Pro Max showcases a blend of
innovative features and premium design, aimed at users seeking high
performance and superior
aesthetics.","type":"output_text","annotations":[]}],"role":"assistant","type":"message","id":"msg_66f4d844-4d9e-4102-80fc-eb75b34b6dbd","status":"completed"}],"parallel_tool_calls":false,"previous_response_id":null,"prompt":{"id":"pmpt_7be2208cb82cdbc35356354dae1f335d1e9b7baeca21ea62","variables":{"product_name":{"text":"iPhone
17 Pro
Max","type":"input_text"},"product_photo":{"detail":"high","type":"input_image","file_id":"file-d6d375f238e14f21952cc40246bc8504","image_url":null}},"version":"1"},"status":"completed","temperature":null,"text":{"format":{"type":"text"}},"top_p":null,"tools":[],"truncation":null,"usage":{"input_tokens":830,"output_tokens":394,"total_tokens":1224,"input_tokens_details":{"cached_tokens":0},"output_tokens_details":{"reasoning_tokens":0}},"instructions":null}%`

**Test Prompts with PDF files in Responses API:**

I used this PDF file for testing purposes:
[invoicesample.pdf](https://github.com/user-attachments/files/22958943/invoicesample.pdf)

1. Upload PDF:

```
curl -X POST http://localhost:8321/v1/files \
  -H "Content-Type: multipart/form-data" \
  -F "file=@/Users/ianmiller/invoicesample.pdf" \
  -F "purpose=assistants"
```


`{"object":"file","id":"file-7fbb1043a4bb468cab60ffe4b8631d8e","bytes":149568,"created_at":1761750730,"expires_at":1793286730,"filename":"invoicesample.pdf","purpose":"assistants"}%`


2. Create prompt:

```
curl -X POST http://localhost:8321/v1/prompts \
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "You are an accounting and financial analysis expert. Analyze the following invoice document:\n\nInvoice Document: {{invoice_doc}}\n\nProvide a comprehensive analysis",
    "variables": ["invoice_doc"]
  }'
```

`{"prompt":"You are an accounting and financial analysis expert. Analyze
the following invoice document:\n\nInvoice Document:
{{invoice_doc}}\n\nProvide a comprehensive
analysis","version":1,"prompt_id":"pmpt_72e2a184a86f32a568b6afb5455dca5c16bf3cc3f80092dc","variables":["invoice_doc"],"is_default":false}%`


3. Create response:

```
curl -X POST http://localhost:8321/v1/responses \
  -H "Content-Type: application/json" \
  -d '{
    "input": "Please provide a detailed analysis of this invoice",
    "model": "openai/gpt-4o",
    "store": true,
    "prompt": {
      "id": "pmpt_72e2a184a86f32a568b6afb5455dca5c16bf3cc3f80092dc",
      "version": "1",
      "variables": {
        "invoice_doc": {
          "type": "input_file",
          "file_id": "file-7fbb1043a4bb468cab60ffe4b8631d8e",
          "filename": "invoicesample.pdf"
        }
      }
    }
  }'
```


`{"created_at":1761750881,"error":null,"id":"resp_da866913-db06-4702-8000-174daed9dbbb","model":"openai/gpt-4o","object":"response","output":[{"content":[{"text":"Here's
a detailed analysis of the invoice provided:\n\n### Seller
Information\n- **Business Name:** The invoice features a logo with
\"Sunny Farm\" indicating the business identity.\n- **Address:** 123
Somewhere St, Melbourne VIC 3000\n- **Contact Information:** Phone
number (03) 1234 5678\n\n### Buyer Information\n- **Name:** Denny
Gunawan\n- **Address:** 221 Queen St, Melbourne VIC 3000\n\n###
Transaction Details\n- **Invoice Number:** #20130304\n- **Date of
Transaction:** Not explicitly mentioned, likely inferred from the
invoice number or needs clarification.\n\n### Items Purchased\n1.
**Apple**\n - Price: $5.00/kg\n - Quantity: 1 kg\n - Subtotal:
$5.00\n\n2. **Orange**\n - Price: $1.99/kg\n - Quantity: 2 kg\n -
Subtotal: $3.98\n\n3. **Watermelon**\n - Price: $1.69/kg\n - Quantity: 3
kg\n - Subtotal: $5.07\n\n4. **Mango**\n - Price: $9.56/kg\n - Quantity:
2 kg\n - Subtotal: $19.12\n\n5. **Peach**\n - Price: $2.99/kg\n -
Quantity: 1 kg\n - Subtotal: $2.99\n\n### Financial Summary\n-
**Subtotal for Items:** $36.00\n- **GST (Goods and Services Tax):** 10%
of $36.00, which amounts to $3.60\n- **Total Amount Due:** $39.60\n\n###
Notes\n- The invoice includes a placeholder text: \"Lorem ipsum dolor
sit amet...\" which is typically used as filler text. This might
indicate a section intended for terms, conditions, or additional notes
that haven’t been completed.\n\n### Visual and Design Elements\n- The
invoice uses a simple and clear layout, featuring the business logo
prominently and stating essential information such as contact and
transaction details in a structured manner.\n- There is a \"Thank You\"
note at the bottom, which adds a professional and courteous
touch.\n\n### Considerations\n- Ensure the date of the transaction is
clear if there are any future references needed.\n- Replace filler text
with relevant terms and conditions or any special instructions
pertaining to the transaction.\n\nThis invoice appears standard,
representing a small business transaction with clearly itemized products
and applicable
taxes.","type":"output_text","annotations":[]}],"role":"assistant","type":"message","id":"msg_39f3b39e-4684-4444-8e4d-e7395f88c9dc","status":"completed"}],"parallel_tool_calls":false,"previous_response_id":null,"prompt":{"id":"pmpt_72e2a184a86f32a568b6afb5455dca5c16bf3cc3f80092dc","variables":{"invoice_doc":{"type":"input_file","file_data":null,"file_id":"file-7fbb1043a4bb468cab60ffe4b8631d8e","file_url":null,"filename":"invoicesample.pdf"}},"version":"1"},"status":"completed","temperature":null,"text":{"format":{"type":"text"}},"top_p":null,"tools":[],"truncation":null,"usage":{"input_tokens":529,"output_tokens":513,"total_tokens":1042,"input_tokens_details":{"cached_tokens":0},"output_tokens_details":{"reasoning_tokens":0}},"instructions":null}%`

**Test simple text Prompt in Responses API:**

1. Create prompt:

```
 curl -X POST http://localhost:8321/v1/prompts \
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "Hello {{name}}! You are working at {{company}}. Your role is {{role}} at {{company}}. Remember, {{name}}, to be {{tone}}.",
    "variables": ["name", "company", "role", "tone"]
  }'
```

`{"prompt":"Hello {{name}}! You are working at {{company}}. Your role is
{{role}} at {{company}}. Remember, {{name}}, to be
{{tone}}.","version":1,"prompt_id":"pmpt_f340a3164a4f65d975c774ffe38ea42d15e7ce4a835919ef","variables":["name","company","role","tone"],"is_default":false}%`

2. Create response:

```
curl -X POST http://localhost:8321/v1/responses \
  -H "Accept: application/json, text/event-stream" \
  -H "Content-Type: application/json" \
  -d '{
    "input": "What is the capital of Ireland?",
    "model": "openai/gpt-4o",
    "store": true,
    "prompt": {
      "id": "pmpt_f340a3164a4f65d975c774ffe38ea42d15e7ce4a835919ef",
      "version": "1",
      "variables": {
        "name": {
          "type": "input_text",
          "text": "Alice"
        },
        "company": {
          "type": "input_text",
          "text": "Dummy Company"
        },
        "role": {
          "type": "input_text",
          "text": "Geography expert"
        },
        "tone": {
          "type": "input_text",
          "text": "professional and helpful"
        }
      }
    }
  }'

```


`{"created_at":1761751097,"error":null,"id":"resp_1b037b95-d9ae-4ad0-8e76-d953897ecaef","model":"openai/gpt-4o","object":"response","output":[{"content":[{"text":"The
capital of Ireland is
Dublin.","type":"output_text","annotations":[]}],"role":"assistant","type":"message","id":"msg_8e7c72b6-2aa2-4da6-8e57-da4e12fa3ce2","status":"completed"}],"parallel_tool_calls":false,"previous_response_id":null,"prompt":{"id":"pmpt_f340a3164a4f65d975c774ffe38ea42d15e7ce4a835919ef","variables":{"name":{"text":"Alice","type":"input_text"},"company":{"text":"Dummy
Company","type":"input_text"},"role":{"text":"Geography
expert","type":"input_text"},"tone":{"text":"professional and
helpful","type":"input_text"}},"version":"1"},"status":"completed","temperature":null,"text":{"format":{"type":"text"}},"top_p":null,"tools":[],"truncation":null,"usage":{"input_tokens":47,"output_tokens":7,"total_tokens":54,"input_tokens_details":{"cached_tokens":0},"output_tokens_details":{"reasoning_tokens":0}},"instructions":null}%`
2025-11-19 11:48:11 -08:00
Roy Belio
f18870a221
fix: Pydantic validation error with list-type metadata in vector search (#3797) (#4173)
# Fix for Issue #3797

## Problem
Vector store search failed with Pydantic ValidationError when chunk
metadata contained list-type values.

**Error:**
```
ValidationError: 3 validation errors for VectorStoreSearchResponse
attributes.tags.str: Input should be a valid string
attributes.tags.float: Input should be a valid number
attributes.tags.bool: Input should be a valid boolean
```

**Root Cause:**
- `Chunk.metadata` accepts `dict[str, Any]` (any type allowed)
- `VectorStoreSearchResponse.attributes` requires `dict[str, str | float
| bool]` (primitives only)
- Direct assignment at line 641 caused validation failure for
non-primitive types

## Solution

Added utility function to filter metadata to primitive types before
creating search response.


## Impact

**Fixed:**
- Vector search works with list metadata (e.g., `tags: ["transformers",
"gpu"]`)
- Lists become searchable as comma-separated strings
- No ValidationError on search responses

**Preserved:**
- Full metadata still available in `VectorStoreContent.metadata`
- No API schema changes
- Backward compatible with existing primitive metadata

**Affected:**
All vector store providers using `OpenAIVectorStoreMixin`: FAISS,
Chroma, Qdrant, Milvus, Weaviate, PGVector, SQLite-vec

## Testing


tests/unit/providers/vector_io/test_vector_utils.py::test_sanitize_metadata_for_attributes

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
2025-11-19 10:16:34 -08:00
Anik
4e9633f7c3
feat: Make Safety API an optional dependency for meta-reference agents provider (#4169)
# What does this PR do?

Change Safety API from required to optional dependency, following the
established pattern used for other optional dependencies in Llama Stack.
    
The provider now starts successfully without Safety API configured.
Requests that explicitly include guardrails will receive a clear error
message when Safety API is unavailable.
    
This enables local development and testing without Safety API while
maintaining clear error messages when guardrail features are requested.
    
Closes #4165
    
Signed-off-by: Anik Bhattacharjee <anbhatta@redhat.com>

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->

1. New unit tests added in
`tests/unit/providers/agents/meta_reference/test_safety_optional.py`

2. Integration tests performed with the files in
https://gist.github.com/anik120/c33cef497ec7085e1fe2164e0705b8d6

 (i) test with `test_integration_no_safety_fail.yaml`:
 
Config WITHOUT Safety API, should fail with helpful error since
`required_safety_api` is `true` by default
```
$ uv run llama stack run test_integration_no_safety_fail.yaml 2>&1 | grep -B 5 -A 15 "ValueError.*Safety\|Safety API is 
  required"
File "/Users/anbhatta/go/src/github.com/llamastack/llama-stack/src/llama_stack/providers/inline/agents/meta_reference
  /__init__.py", line 27, in get_provider_impl
      raise ValueError(
      ...<9 lines>...
      )
  ValueError: Safety API is required but not configured.

  To run without safety checks, explicitly set in your configuration:
    providers:
      agents:
        - provider_id: meta-reference
          provider_type: inline::meta-reference
          config:
            require_safety_api: false

  Warning: This disables all safety guardrails for this agents provider.
```

(ii) test with `test_integration_no_safety_works.yaml`

Config WITHOUT Safety API, **but** `require_safety_api=false` is
explicitly set, should succeed

```
$ uv run llama stack run test_integration_no_safety_works.yaml
 INFO     2025-11-16 09:49:10,044 llama_stack.cli.stack.run:169 cli: Using run configuration:                           
   
           /Users/anbhatta/go/src/github.com/llamastack/llama-stack/test_integration_no_safety_works.yaml                
   
  INFO     2025-11-16 09:49:10,052 llama_stack.cli.stack.run:228 cli: HTTPS enabled with certificates:

             Key: None

             Cert: None

  .
  .
  .
  INFO     2025-11-16 09:49:38,528 llama_stack.core.stack:495 core: starting registry refresh task

  INFO     2025-11-16 09:49:38,534 uvicorn.error:62 uncategorized: Application startup complete.

  INFO     2025-11-16 09:49:38,535 uvicorn.error:216 uncategorized: Uvicorn running on http://0.0.0.0:8321 (Press CTRL+C
```


Signed-off-by: Anik Bhattacharjee <anbhatta@redhat.com>

Signed-off-by: Anik Bhattacharjee <anbhatta@redhat.com>
2025-11-19 10:04:24 -08:00
Charlie Doern
d5cd0eea14
feat!: standardize base_url for inference (#4177)
# What does this PR do?

Completes #3732 by removing runtime URL transformations and requiring
users to provide full URLs in configuration. All providers now use
'base_url' consistently and respect the exact URL provided without
appending paths like /v1 or /openai/v1 at runtime.

BREAKING CHANGE: Users must update configs to include full URL paths
(e.g., http://localhost:11434/v1 instead of http://localhost:11434).

Closes #3732 

## Test Plan

Existing tests should pass even with the URL changes, due to default
URLs being altered.

Add unit test to enforce URL standardization across remote inference
providers (verifies all use 'base_url' field with HttpUrl | None type)

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-11-19 08:44:28 -08:00
Ashwin Bharambe
bd5ad2963e
refactor(storage): make { kvstore, sqlstore } as llama stack "internal" APIs (#4181)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Integration Tests (Replay) / generate-matrix (push) Successful in 5s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 6s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test llama stack list-deps / generate-matrix (push) Successful in 3s
Python Package Build Test / build (3.13) (push) Failing after 3s
API Conformance Tests / check-schema-compatibility (push) Successful in 13s
Python Package Build Test / build (3.12) (push) Failing after 7s
Test llama stack list-deps / show-single-provider (push) Successful in 28s
Test llama stack list-deps / list-deps-from-config (push) Successful in 33s
Test External API and Providers / test-external (venv) (push) Failing after 33s
Vector IO Integration Tests / test-matrix (push) Failing after 43s
Test llama stack list-deps / list-deps (push) Failing after 34s
Test Llama Stack Build / build-single-provider (push) Successful in 46s
Test Llama Stack Build / build (push) Successful in 55s
UI Tests / ui-tests (22) (push) Successful in 1m17s
Test Llama Stack Build / build-ubi9-container-distribution (push) Successful in 1m37s
Unit Tests / unit-tests (3.12) (push) Failing after 1m32s
Unit Tests / unit-tests (3.13) (push) Failing after 2m12s
Test Llama Stack Build / build-custom-container-distribution (push) Successful in 2m21s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 2m46s
Pre-commit / pre-commit (push) Successful in 3m7s
These primitives (used both by the Stack as well as provider
implementations) can be thought of fruitfully as internal-only APIs
which can themselves have multiple implementations. We use the new
`llama_stack_api.internal` namespace for this.

In addition: the change moves kv/sql store impls, configs, and
dependency helpers under `core/storage`

## Testing

`pytest tests/unit/utils/test_authorized_sqlstore.py`, other existing CI
2025-11-18 13:15:16 -08:00
Mike Sager
cc88789071
test: Restore responses unit tests (#4153)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Integration Tests (Replay) / generate-matrix (push) Successful in 3s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test llama stack list-deps / generate-matrix (push) Successful in 4s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 10s
API Conformance Tests / check-schema-compatibility (push) Successful in 10s
Python Package Build Test / build (3.12) (push) Failing after 5s
Test llama stack list-deps / list-deps-from-config (push) Successful in 40s
Test Llama Stack Build / build-single-provider (push) Successful in 42s
Test llama stack list-deps / show-single-provider (push) Successful in 43s
Test llama stack list-deps / list-deps (push) Failing after 37s
Test Llama Stack Build / build (push) Successful in 40s
Vector IO Integration Tests / test-matrix (push) Failing after 47s
Test External API and Providers / test-external (venv) (push) Failing after 46s
Python Package Build Test / build (3.13) (push) Failing after 55s
UI Tests / ui-tests (22) (push) Successful in 1m2s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 1m11s
Unit Tests / unit-tests (3.12) (push) Failing after 1m39s
Test Llama Stack Build / build-custom-container-distribution (push) Successful in 1m53s
Test Llama Stack Build / build-ubi9-container-distribution (push) Successful in 2m1s
Unit Tests / unit-tests (3.13) (push) Failing after 2m12s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 2m46s
Pre-commit / pre-commit (push) Successful in 3m12s
# What does this PR do?
Restores the responses unit tests that were inadvertently deleted in PR
[#4055 ](https://github.com/llamastack/llama-stack/pull/4055)


## Test Plan
I ran the unit tests that I restored. They all passed with one
exception:


tests/unit/providers/agents/meta_reference/test_openai_responses.py::test_reuse_mcp_tool_list

AttributeError: module 'llama_stack.providers.utils.tools' has no
attribute 'mcp'

It's coming from this line:

    @patch("llama_stack.providers.utils.tools.mcp.list_mcp_tools")

The mcp.py module (and \_\_init\_\_.py) exists under tools. There are
some 'from mcp ....' imports (mcp package in this case) within it that
python may be interpreting as circular imports (or maybe I'm overlooking
something).
2025-11-14 13:16:03 -08:00
Charlie Doern
a078f089d9
fix: rename llama_stack_api dir (#4155)
Some checks failed
Integration Tests (Replay) / generate-matrix (push) Successful in 3s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test Llama Stack Build / generate-matrix (push) Successful in 5s
Python Package Build Test / build (3.12) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 12s
Test llama stack list-deps / generate-matrix (push) Successful in 29s
Test Llama Stack Build / build-single-provider (push) Successful in 33s
Test llama stack list-deps / list-deps-from-config (push) Successful in 32s
UI Tests / ui-tests (22) (push) Successful in 39s
Test Llama Stack Build / build (push) Successful in 39s
Test llama stack list-deps / show-single-provider (push) Successful in 46s
Python Package Build Test / build (3.13) (push) Failing after 44s
Test External API and Providers / test-external (venv) (push) Failing after 44s
Vector IO Integration Tests / test-matrix (push) Failing after 56s
Test llama stack list-deps / list-deps (push) Failing after 47s
Unit Tests / unit-tests (3.12) (push) Failing after 1m42s
Unit Tests / unit-tests (3.13) (push) Failing after 1m55s
Test Llama Stack Build / build-ubi9-container-distribution (push) Successful in 2m0s
Test Llama Stack Build / build-custom-container-distribution (push) Successful in 2m2s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 2m42s
Pre-commit / pre-commit (push) Successful in 5m17s
# What does this PR do?

the directory structure was src/llama-stack-api/llama_stack_api

instead it should just be src/llama_stack_api to match the other
packages.

update the structure and pyproject/linting config

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-11-13 15:04:36 -08:00
Charlie Doern
840ad75fe9
feat: split API and provider specs into separate llama-stack-api pkg (#3895)
# What does this PR do?

Extract API definitions and provider specifications into a standalone
llama-stack-api package that can be published to PyPI independently of
the main llama-stack server.


see: https://github.com/llamastack/llama-stack/pull/2978 and
https://github.com/llamastack/llama-stack/pull/2978#issuecomment-3145115942

Motivation

External providers currently import from llama-stack, which overrides
the installed version and causes dependency conflicts. This separation
allows external providers to:

- Install only the type definitions they need without server
dependencies
- Avoid version conflicts with the installed llama-stack package
- Be versioned and released independently

This enables us to re-enable external provider module tests that were
previously blocked by these import conflicts.

Changes

- Created llama-stack-api package with minimal dependencies (pydantic,
jsonschema)
- Moved APIs, providers datatypes, strong_typing, and schema_utils
- Updated all imports from llama_stack.* to llama_stack_api.*
- Configured local editable install for development workflow
- Updated linting and type-checking configuration for both packages

Next Steps

- Publish llama-stack-api to PyPI
- Update external provider dependencies
- Re-enable external provider module tests


Pre-cursor PRs to this one:

- #4093 
- #3954 
- #4064 

These PRs moved key pieces _out_ of the Api pkg, limiting the scope of
change here.


relates to #3237 

## Test Plan

Package builds successfully and can be imported independently. All
pre-commit hooks pass with expected exclusions maintained.

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-11-13 11:51:17 -08:00
Mustafa Elbehery
a6eed99790 fix(unittest): add required chunk_id field to Milvus test mock data
The Chunk Pydantic model requires chunk_id as a mandatory field, but the
  mock data in test_milvus.py was missing this field in chunk_content objects,
  causing 6 test failures with ValidationError.

Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
2025-11-12 23:06:17 +01:00
Mustafa Elbehery
c6bf292f07 fix(unittest): add pymilvus and milvus-lite to unit dep group
This commit resolves unittest-3.12 issues.

- It adds pymilvus and milvus-lite to unit dep group
- It rename VectorDB to VectorStore

Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
2025-11-12 23:06:17 +01:00
Mustafa Elbehery
3e8291c1b9 fix: resolve rebase conflicts
Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
2025-11-12 23:06:17 +01:00
Mustafa Elbehery
2347db868d refactor(client): replace all AsyncMilvusClient usage of has_collection() with list_collections()
Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
2025-11-12 23:06:17 +01:00
Mustafa Elbehery
f94d614631 fix(integration): init AsyncMilvusClient before MilvusIndex
Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
2025-11-12 23:06:17 +01:00
Mustafa Elbehery
6aabf80566 chore: remove irrelevant comments
Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
2025-11-12 23:06:17 +01:00
Mustafa Elbehery
1db4800c9c feat(client): migrate MilvusClient to AsyncMilvusClient
The commit makes the follwing changes.
-  Import statements updated: MilvusClient → AsyncMilvusClient
-  Removed asyncio.to_thread() wrappers: All Milvus operations now use native async/await
-  Test compatibility: Mock objects and fixtures updated to work with AsyncMilvusClient

Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
2025-11-12 23:06:17 +01:00
Charlie Doern
43adc23ef6
refactor: remove dead inference API code and clean up imports (#4093)
# What does this PR do?

Delete ~2,000 lines of dead code from the old bespoke inference API that
was replaced by OpenAI-only API. This includes removing unused type
conversion functions, dead provider methods, and event_logger.py.

Clean up imports across the codebase to remove references to deleted
types. This eliminates unnecessary
code and dependencies, helping isolate the API package as a
self-contained module.

This is the last interdependency between the .api package and "exterior"
packages, meaning that now every other package in llama stack imports
the API, not the other way around.

## Test Plan

this is a structural change, no tests needed.

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-11-10 15:29:24 -08:00
Juan Pérez de Algaba
6147321083
fix: Vector store persistence across server restarts (#3977)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.12) (push) Failing after 2s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Python Package Build Test / build (3.13) (push) Failing after 17s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 21s
Integration Tests (Replay) / generate-matrix (push) Successful in 21s
Unit Tests / unit-tests (3.12) (push) Failing after 18s
Pre-commit / pre-commit (push) Failing after 23s
Test External API and Providers / test-external (venv) (push) Failing after 22s
API Conformance Tests / check-schema-compatibility (push) Successful in 30s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 20s
UI Tests / ui-tests (22) (push) Successful in 1m10s
# What does this PR do?

This PR fixes a bug in LlamaStack 0.3.0 where vector stores created via
the OpenAI-compatible API (`POST /v1/vector_stores`) would fail with
`VectorStoreNotFoundError` after server restart when attempting
operations like `vector_io.insert()` or `vector_io.query()`.

The bug affected **6 vector IO providers**: `pgvector`, `sqlite_vec`,
`chroma`, `milvus`, `qdrant`, and `weaviate`.

Created with the assistance of: claude-4.5-sonnet

## Root Cause

All affected providers had a broken
`_get_and_cache_vector_store_index()` method that:
1. Did not load existing vector stores from persistent storage during
initialization
2. Attempted to use `vector_store_table` (which was either `None` or a
`KVStore` without the required `get_vector_store()` method)
3. Could not reload vector stores after server restart or cache miss

## Solution

This PR implements a consistent pattern across all 6 providers:

1. **Load vector stores during initialization** - Pre-populate the cache
from KV store on startup
2. **Fix lazy loading** - Modified `_get_and_cache_vector_store_index()`
to load directly from KV store instead of relying on
`vector_store_table`
3. **Remove broken dependency** - Eliminated reliance on the
`vector_store_table` pattern

## Testing steps

### 1.1 Configure the stack

Create or use an existing configuration with a vector IO provider.

**Example `run.yaml`:**

```yaml
vector_io_store:
  - provider_id: pgvector
    provider_type: remote::pgvector
    config:
      host: localhost
      port: 5432
      db: llamastack
      user: llamastack
      password: llamastack

inference:
  - provider_id: sentence-transformers
    provider_type: inline::sentence-transformers
    config:
      model: sentence-transformers/all-MiniLM-L6-v2
```

### 1.2 Start the server

```bash
llama stack run run.yaml --port 5000
```

Wait for the server to fully start. You should see:

```
INFO: Started server process
INFO: Application startup complete
```

---

## Step 2: Create a Vector Store

### 2.1 Create via API

```bash
curl -X POST http://localhost:5000/v1/vector_stores \
  -H "Content-Type: application/json" \
  -d '{
    "name": "test-persistence-store",
    "extra_body": {
      "embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
      "embedding_dimension": 384,
      "provider_id": "pgvector"
    }
  }' | jq
```

### 2.2 Expected Response

```json
{
  "id": "vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d",
  "object": "vector_store",
  "name": "test-persistence-store",
  "status": "completed",
  "created_at": 1730304000,
  "file_counts": {
    "total": 0,
    "completed": 0,
    "in_progress": 0,
    "failed": 0,
    "cancelled": 0
  },
  "usage_bytes": 0
}
```

**Save the `id` field** (e.g.,
`vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d`) — you’ll need it for the next
steps.

---

## Step 3: Insert Data (Before Restart)

### 3.1 Insert chunks into the vector store

```bash
export VS_ID="vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d"

curl -X POST http://localhost:5000/vector-io/insert \
  -H "Content-Type: application/json" \
  -d "{
    \"vector_store_id\": \"$VS_ID\",
    \"chunks\": [
      {
        \"content\": \"Python is a high-level programming language known for its readability.\",
        \"metadata\": {\"source\": \"doc1\", \"page\": 1}
      },
      {
        \"content\": \"Machine learning enables computers to learn from data without explicit programming.\",
        \"metadata\": {\"source\": \"doc2\", \"page\": 1}
      },
      {
        \"content\": \"Neural networks are inspired by biological neurons in the brain.\",
        \"metadata\": {\"source\": \"doc3\", \"page\": 1}
      }
    ]
  }"
```

### 3.2 Expected Response

Status: **200 OK**  
Response: *Empty or success confirmation*

---

## Step 4: Query Data (Before Restart – Baseline)

### 4.1 Query the vector store

```bash
curl -X POST http://localhost:5000/vector-io/query \
  -H "Content-Type: application/json" \
  -d "{
    \"vector_store_id\": \"$VS_ID\",
    \"query\": \"What is machine learning?\"
  }" | jq
```

### 4.2 Expected Response

```json
{
  "chunks": [
    {
      "content": "Machine learning enables computers to learn from data without explicit programming.",
      "metadata": {"source": "doc2", "page": 1}
    },
    {
      "content": "Neural networks are inspired by biological neurons in the brain.",
      "metadata": {"source": "doc3", "page": 1}
    }
  ],
  "scores": [0.85, 0.72]
}
```

**Checkpoint:** Works correctly before restart.

---

## Step 5: Restart the Server (Critical Test)

### 5.1 Stop the server

In the terminal where it’s running:

```
Ctrl + C
```

Wait for:

```
Shutting down...
```

### 5.2 Restart the server

```bash
llama stack run run.yaml --port 5000
```

Wait for:

```
INFO: Started server process
INFO: Application startup complete
```

The vector store cache is now empty, but data should persist.

---

## Step 6: Verify Vector Store Exists (After Restart)

### 6.1 List vector stores

```bash
curl http://localhost:5000/v1/vector_stores | jq
```

### 6.2 Expected Response

```json
{
  "object": "list",
  "data": [
    {
      "id": "vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d",
      "name": "test-persistence-store",
      "status": "completed"
    }
  ]
}
```

**Checkpoint:** Vector store should be listed.

---

## Step 7: Insert Data (After Restart – THE BUG TEST)

### 7.1 Insert new chunks

```bash
curl -X POST http://localhost:5000/vector-io/insert \
  -H "Content-Type: application/json" \
  -d "{
    \"vector_store_id\": \"$VS_ID\",
    \"chunks\": [
      {
        \"content\": \"This chunk was inserted AFTER the server restart.\",
        \"metadata\": {\"source\": \"post-restart\", \"test\": true}
      }
    ]
  }"
```

### 7.2 Expected Results

**With Fix (Correct):**
```
Status: 200 OK
Response: Success
```

 **Without Fix (Bug):**
```json
{
  "detail": "VectorStoreNotFoundError: Vector Store 'vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d' not found."
}
```

 **Critical Test:** If insertion succeeds, the fix works.

---

## Step 8: Query Data (After Restart – Verification)

### 8.1 Query all data

```bash
curl -X POST http://localhost:5000/vector-io/query \
  -H "Content-Type: application/json" \
  -d "{
    \"vector_store_id\": \"$VS_ID\",
    \"query\": \"restart\"
  }" | jq
```

### 8.2 Expected Response

```json
{
  "chunks": [
    {
      "content": "This chunk was inserted AFTER the server restart.",
      "metadata": {"source": "post-restart", "test": true}
    }
  ],
  "scores": [0.95]
}
```

**Checkpoint:** Both old and new data are queryable.

---

## Step 9: Multiple Restart Test (Extra Verification)

### 9.1 Restart again

```bash
Ctrl + C
llama stack run run.yaml --port 5000
```

### 9.2 Query after restart

```bash
curl -X POST http://localhost:5000/vector-io/query \
  -H "Content-Type: application/json" \
  -d "{
    \"vector_store_id\": \"$VS_ID\",
    \"query\": \"programming\"
  }" | jq
```

**Expected:** Works correctly across multiple restarts.

---------

Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
2025-11-09 00:05:00 -05:00
Sumanth Kamenani
e894e36eea
feat: add OpenAI-compatible Bedrock provider (#3748)
Some checks failed
Pre-commit / pre-commit (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Integration Tests (Replay) / generate-matrix (push) Successful in 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test Llama Stack Build / build-single-provider (push) Failing after 5s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 4s
Python Package Build Test / build (3.12) (push) Failing after 2s
Python Package Build Test / build (3.13) (push) Failing after 1s
Test llama stack list-deps / generate-matrix (push) Successful in 4s
Test llama stack list-deps / show-single-provider (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
Test llama stack list-deps / list-deps-from-config (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Test Llama Stack Build / build (push) Failing after 3s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Test llama stack list-deps / list-deps (push) Failing after 4s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 9s
UI Tests / ui-tests (22) (push) Successful in 48s
Implements AWS Bedrock inference provider using OpenAI-compatible
endpoint for Llama models available through Bedrock.

Closes: #3410


## What does this PR do?

Adds AWS Bedrock as an inference provider using the OpenAI-compatible
endpoint. This lets us use Bedrock models (GPT-OSS, Llama) through the
standard llama-stack inference API.

The implementation uses LiteLLM's OpenAI client under the hood, so it
gets all the OpenAI compatibility features. The provider handles
per-request API key overrides via headers.

## Test Plan

**Tested the following scenarios:**
- Non-streaming completion - basic request/response flow
- Streaming completion - SSE streaming with chunked responses
- Multi-turn conversations - context retention across turns
- Tool calling - function calling with proper tool_calls format

# Bedrock OpenAI-Compatible Provider - Test Results


**Model:** `bedrock-inference/openai.gpt-oss-20b-1:0`


---

## Test 1: Model Listing

**Request:**
```http
GET /v1/models HTTP/1.1
```

**Response:**
```http
HTTP/1.1 200 OK
Content-Type: application/json

{
  "data": [
    {"identifier": "bedrock-inference/openai.gpt-oss-20b-1:0", ...},
    {"identifier": "bedrock-inference/openai.gpt-oss-40b-1:0", ...}
  ]
}
```

---

## Test 2: Non-Streaming Completion

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
Content-Type: application/json

{
  "model": "bedrock-inference/openai.gpt-oss-20b-1:0",
  "messages": [{"role": "user", "content": "Say 'Hello from Bedrock' and nothing else"}],
  "stream": false
}
```

**Response:**
```http
HTTP/1.1 200 OK
Content-Type: application/json

{
  "choices": [{
    "finish_reason": "stop",
    "message": {"content": "...Hello from Bedrock"}
  }],
  "usage": {"prompt_tokens": 79, "completion_tokens": 50, "total_tokens": 129}
}
```

---

## Test 3: Streaming Completion

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
Content-Type: application/json

{
  "model": "bedrock-inference/openai.gpt-oss-20b-1:0",
  "messages": [{"role": "user", "content": "Count from 1 to 5"}],
  "stream": true
}
```

**Response:**
```http
HTTP/1.1 200 OK
Content-Type: text/event-stream

[6 SSE chunks received]
Final content: "1, 2, 3, 4, 5"
```

---

## Test 4: Error Handling - Invalid Model

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
Content-Type: application/json

{
  "model": "invalid-model-id",
  "messages": [{"role": "user", "content": "Hello"}],
  "stream": false
}
```

**Response:**
```http
HTTP/1.1 404 Not Found
Content-Type: application/json

{
  "detail": "Model 'invalid-model-id' not found. Use 'client.models.list()' to list available Models."
}
```

---

## Test 5: Multi-Turn Conversation

**Request 1:**
```http
POST /v1/chat/completions HTTP/1.1

{
  "messages": [{"role": "user", "content": "My name is Alice"}]
}
```

**Response 1:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "message": {"content": "...Nice to meet you, Alice! How can I help you today?"}
  }]
}
```

**Request 2 (with history):**
```http
POST /v1/chat/completions HTTP/1.1

{
  "messages": [
    {"role": "user", "content": "My name is Alice"},
    {"role": "assistant", "content": "...Nice to meet you, Alice!..."},
    {"role": "user", "content": "What is my name?"}
  ]
}
```

**Response 2:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "message": {"content": "...Your name is Alice."}
  }],
  "usage": {"prompt_tokens": 183, "completion_tokens": 42}
}
```

**Context retained across turns**

---

## Test 6: System Messages

**Request:**
```http
POST /v1/chat/completions HTTP/1.1

{
  "messages": [
    {"role": "system", "content": "You are Shakespeare. Respond only in Shakespearean English."},
    {"role": "user", "content": "Tell me about the weather"}
  ]
}
```

**Response:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "message": {"content": "Lo! I heed thy request..."}
  }],
  "usage": {"completion_tokens": 813}
}
```


---

## Test 7: Tool Calling

**Request:**
```http
POST /v1/chat/completions HTTP/1.1

{
  "messages": [{"role": "user", "content": "What's the weather in San Francisco?"}],
  "tools": [{
    "type": "function",
    "function": {
      "name": "get_weather",
      "parameters": {"type": "object", "properties": {"location": {"type": "string"}}}
    }
  }]
}
```

**Response:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "finish_reason": "tool_calls",
    "message": {
      "tool_calls": [{
        "function": {"name": "get_weather", "arguments": "{\"location\":\"San Francisco\"}"}
      }]
    }
  }]
}
```

---

## Test 8: Sampling Parameters

**Request:**
```http
POST /v1/chat/completions HTTP/1.1

{
  "messages": [{"role": "user", "content": "Say hello"}],
  "temperature": 0.7,
  "top_p": 0.9
}
```

**Response:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "message": {"content": "...Hello! 👋 How can I help you today?"}
  }]
}
```

---

## Test 9: Authentication Error Handling

### Subtest A: Invalid API Key

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
x-llamastack-provider-data: {"aws_bedrock_api_key": "invalid-fake-key-12345"}

{"model": "bedrock-inference/openai.gpt-oss-20b-1:0", ...}
```

**Response:**
```http
HTTP/1.1 400 Bad Request

{
  "detail": "Invalid value: Authentication failed: Error code: 401 - {'error': {'message': 'Invalid API Key format: Must start with pre-defined prefix', ...}}"
}
```

---

### Subtest B: Empty API Key (Fallback to Config)

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
x-llamastack-provider-data: {"aws_bedrock_api_key": ""}

{"model": "bedrock-inference/openai.gpt-oss-20b-1:0", ...}
```

**Response:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "message": {"content": "...Hello! How can I assist you today?"}
  }]
}
```

 **Fell back to config key**

---

### Subtest C: Malformed Token

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
x-llamastack-provider-data: {"aws_bedrock_api_key": "not-a-valid-bedrock-token-format"}

{"model": "bedrock-inference/openai.gpt-oss-20b-1:0", ...}
```

**Response:**
```http
HTTP/1.1 400 Bad Request

{
  "detail": "Invalid value: Authentication failed: Error code: 401 - {'error': {'message': 'Invalid API Key format: Must start with pre-defined prefix', ...}}"
}
```
2025-11-06 17:18:18 -08:00
Ashwin Bharambe
a8a8aa56c0
chore!: remove the agents (sessions and turns) API (#4055)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Pre-commit / pre-commit (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 2s
Python Package Build Test / build (3.13) (push) Failing after 2s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 5s
Test External API and Providers / test-external (venv) (push) Failing after 5s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 9s
Unit Tests / unit-tests (3.13) (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 6s
API Conformance Tests / check-schema-compatibility (push) Successful in 13s
UI Tests / ui-tests (22) (push) Successful in 1m10s
- Removes the deprecated agents (sessions and turns) API that was marked
alpha in 0.3.0
- Cleans up unused imports and orphaned types after the API removal
- Removes `SessionNotFoundError` and `AgentTurnInputType` which are no
longer needed

The agents API is completely superseded by the Responses + Conversations
APIs, and the client SDK Agent class already uses those implementations.

Corresponding client-side PR:
https://github.com/llamastack/llama-stack-client-python/pull/295
2025-11-04 09:38:39 -08:00
Mustafa Elbehery
a6ddbae0ed
chore(test): migrate unit tests from unittest to pytest nvidia test eval (#3249)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Python Package Build Test / build (3.12) (push) Failing after 2s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Pre-commit / pre-commit (push) Failing after 2s
Python Package Build Test / build (3.13) (push) Failing after 2s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 5s
Vector IO Integration Tests / test-matrix (push) Failing after 6s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 6s
API Conformance Tests / check-schema-compatibility (push) Successful in 14s
Unit Tests / unit-tests (3.13) (push) Failing after 6s
UI Tests / ui-tests (22) (push) Successful in 1m16s
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR migrates `unittest` to `pytest` in
`tests/unit/providers/nvidia/test_eval.py`.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Part of https://github.com/llamastack/llama-stack/issues/2680

Supersedes https://github.com/llamastack/llama-stack/pull/2791

Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
2025-11-04 10:29:07 +01:00
Matthew Farrellee
1263448de2
fix: allowed_models config did not filter models (#4030)
# What does this PR do?

closes #4022 

## Test Plan

ci w/ new tests

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-11-03 11:43:39 -08:00
Jiayi Ni
fa7699d2c3
feat: Add rerank API for NVIDIA Inference Provider (#3329)
# What does this PR do?
Add rerank API for NVIDIA Inference Provider.

<!-- If resolving an issue, uncomment and update the line below -->
Closes #3278 

## Test Plan
Unit test:
```
pytest tests/unit/providers/nvidia/test_rerank_inference.py
```

Integration test: 
```
pytest -s -v tests/integration/inference/test_rerank.py   --stack-config="inference=nvidia"   --rerank-model=nvidia/nvidia/nv-rerankqa-mistral-4b-v3   --env NVIDIA_API_KEY=""   --env NVIDIA_BASE_URL="https://integrate.api.nvidia.com"
```
2025-10-30 21:42:09 -07:00
Charlie Doern
e8ecc99524
fix!: remove chunk_id property from Chunk class (#3954)
# What does this PR do?

chunk_id in the Chunk class executes actual logic to compute a chunk ID.
This sort of logic should not live in the API spec.

Instead, the providers should be in charge of calling generate_chunk_id,
and pass it to `Chunk`.

this removes the incorrect dependency between Provider impl and API impl

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-10-29 18:59:59 -07:00
Ashwin Bharambe
c9d4b6c54f
chore(mypy): part-04 resolve mypy errors in meta_reference agents (#3969)
## Summary
Fixes all mypy type errors in `providers/inline/agents/meta_reference/`
and removes exclusions from pyproject.toml.

## Changes
- Fix type annotations for Safety API message parameters
(OpenAIMessageParam)
- Add Action enum usage in access control checks
- Correct method signatures to match API supertype (parameter ordering)
- Handle optional return types with proper None checks
- Remove 3 meta_reference exclusions from mypy config

**Files fixed:** 25 errors across 3 files (safety.py, persistence.py,
agents.py)
2025-10-29 13:37:28 -07:00
Matthew Farrellee
a9b00db421
feat: add provider data keys for Cerebras, Databricks, NVIDIA, and RunPod (#3734)
# What does this PR do?

add provider-data key passing support to Cerebras, Databricks, NVIDIA
and RunPod

also, added missing tests for Fireworks, Anthropic, Gemini, SambaNova,
and vLLM

addresses #3517 

## Test Plan

ci w/ new tests

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-10-27 13:09:35 -07:00
Luis Tomas Bolivar
63422e5b36
fix!: Enhance response API support to not fail with tool calling (#3385)
Some checks failed
Python Package Build Test / build (3.12) (push) Failing after 8s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 3s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 5s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 6s
Python Package Build Test / build (3.13) (push) Failing after 6s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 10s
Unit Tests / unit-tests (3.13) (push) Failing after 14s
Unit Tests / unit-tests (3.12) (push) Failing after 19s
Test External API and Providers / test-external (venv) (push) Failing after 1m3s
Vector IO Integration Tests / test-matrix (push) Failing after 1m6s
API Conformance Tests / check-schema-compatibility (push) Successful in 1m17s
UI Tests / ui-tests (22) (push) Successful in 1m18s
Pre-commit / pre-commit (push) Successful in 3m5s
# What does this PR do?
Introduces two main fixes to enhance the stability of Responses API when
dealing with tool calling responses and structured outputs.

### Changes Made

1. It added OpenAIResponseOutputMessageMCPCall and ListTools to
OpenAIResponseInput but
https://github.com/llamastack/llama-stack/pull/3810 got merge that did
the same in a different way. Still this PR does it in a way that keep
the sync between OpenAIResponsesOutput and the allowed objects in
OpenAIResponseInput.

2. Add protection in case self.ctx.response_format does not have type
attribute

BREAKING CHANGE: OpenAIResponseInput now uses OpenAIResponseOutput union
type.
This is semantically equivalent - all previously accepted types are
still supported
via the OpenAIResponseOutput union. This improves type consistency and
maintainability.
2025-10-27 09:33:02 -07:00
dependabot[bot]
8885cea8d7
fix(conversations)!: update Conversations API definitions (was: bump openai from 1.107.0 to 2.5.0) (#3847)
Bumps [openai](https://github.com/openai/openai-python) from 1.107.0 to
2.5.0.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/openai/openai-python/releases">openai's
releases</a>.</em></p>
<blockquote>
<h2>v2.5.0</h2>
<h2>2.5.0 (2025-10-17)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.4.0...v2.5.0">v2.4.0...v2.5.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> api update (<a
href="8b280d57d6">8b280d5</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li>bump <code>httpx-aiohttp</code> version to 0.1.9 (<a
href="67f2f0afe5">67f2f0a</a>)</li>
</ul>
<h2>v2.4.0</h2>
<h2>2.4.0 (2025-10-16)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.3.0...v2.4.0">v2.3.0...v2.4.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> Add support for gpt-4o-transcribe-diarize on
audio/transcriptions endpoint (<a
href="bdbe9b8f44">bdbe9b8</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li>fix dangling comment (<a
href="da14e99606">da14e99</a>)</li>
<li><strong>internal:</strong> detect missing future annotations with
ruff (<a
href="2672b8f072">2672b8f</a>)</li>
</ul>
<h2>v2.3.0</h2>
<h2>2.3.0 (2025-10-10)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.2.0...v2.3.0">v2.2.0...v2.3.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> comparison filter in/not in (<a
href="aa49f626a6">aa49f62</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li><strong>package:</strong> bump jiter to &gt;=0.10.0 to support
Python 3.14 (<a
href="https://redirect.github.com/openai/openai-python/issues/2618">#2618</a>)
(<a
href="aa445cab5c">aa445ca</a>)</li>
</ul>
<h2>v2.2.0</h2>
<h2>2.2.0 (2025-10-06)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.1.0...v2.2.0">v2.1.0...v2.2.0</a></p>
<h3>Features</h3>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/openai/openai-python/blob/main/CHANGELOG.md">openai's
changelog</a>.</em></p>
<blockquote>
<h2>2.5.0 (2025-10-17)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.4.0...v2.5.0">v2.4.0...v2.5.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> api update (<a
href="8b280d57d6">8b280d5</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li>bump <code>httpx-aiohttp</code> version to 0.1.9 (<a
href="67f2f0afe5">67f2f0a</a>)</li>
</ul>
<h2>2.4.0 (2025-10-16)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.3.0...v2.4.0">v2.3.0...v2.4.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> Add support for gpt-4o-transcribe-diarize on
audio/transcriptions endpoint (<a
href="bdbe9b8f44">bdbe9b8</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li>fix dangling comment (<a
href="da14e99606">da14e99</a>)</li>
<li><strong>internal:</strong> detect missing future annotations with
ruff (<a
href="2672b8f072">2672b8f</a>)</li>
</ul>
<h2>2.3.0 (2025-10-10)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.2.0...v2.3.0">v2.2.0...v2.3.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> comparison filter in/not in (<a
href="aa49f626a6">aa49f62</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li><strong>package:</strong> bump jiter to &gt;=0.10.0 to support
Python 3.14 (<a
href="https://redirect.github.com/openai/openai-python/issues/2618">#2618</a>)
(<a
href="aa445cab5c">aa445ca</a>)</li>
</ul>
<h2>2.2.0 (2025-10-06)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.1.0...v2.2.0">v2.1.0...v2.2.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> dev day 2025 launches (<a
href="38ac0093eb">38ac009</a>)</li>
</ul>
<h3>Bug Fixes</h3>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="513ae76253"><code>513ae76</code></a>
release: 2.5.0 (<a
href="https://redirect.github.com/openai/openai-python/issues/2694">#2694</a>)</li>
<li><a
href="ebf32212f7"><code>ebf3221</code></a>
release: 2.4.0</li>
<li><a
href="e043d7b164"><code>e043d7b</code></a>
chore: fix dangling comment</li>
<li><a
href="25cbb74f83"><code>25cbb74</code></a>
feat(api): Add support for gpt-4o-transcribe-diarize on
audio/transcriptions ...</li>
<li><a
href="8cdfd0650e"><code>8cdfd06</code></a>
codegen metadata</li>
<li><a
href="d5c64434b7"><code>d5c6443</code></a>
codegen metadata</li>
<li><a
href="b20a9e7b81"><code>b20a9e7</code></a>
chore(internal): detect missing future annotations with ruff</li>
<li><a
href="e5f93f5dae"><code>e5f93f5</code></a>
release: 2.3.0</li>
<li><a
href="044878859c"><code>0448788</code></a>
feat(api): comparison filter in/not in</li>
<li><a
href="85a91ade61"><code>85a91ad</code></a>
chore(package): bump jiter to &gt;=0.10.0 to support Python 3.14 (<a
href="https://redirect.github.com/openai/openai-python/issues/2618">#2618</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/openai/openai-python/compare/v1.107.0...v2.5.0">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=openai&package-manager=uv&previous-version=1.107.0&new-version=2.5.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-10-22 12:32:48 -07:00
Jiayi Ni
bb1ebb3c6b
feat: Add rerank models and rerank API change (#3831)
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
- Extend the model type to include rerank models.
- Implement `rerank()` method in inference router.
- Add `rerank_model_list` to `OpenAIMixin` to enable providers to
register and identify rerank models
- Update documentation.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
```
pytest tests/unit/providers/utils/inference/test_openai_mixin.py
```
2025-10-22 12:02:28 -07:00
slekkala1
eb2b240594
fix: remove consistency checks (#3881)
# What does this PR do?
metadata is conflicting with the default embedding model set on server
side via extra body, removing the check and just letting metadata take
precedence over extra body

`ValueError: Embedding model inconsistent between metadata
('text-embedding-3-small') and extra_body
     ('sentence-transformers/nomic-ai/nomic-embed-text-v1.5')`
## Test Plan
CI
2025-10-21 14:40:14 -07:00
Ashwin Bharambe
bd3c473208
revert: "chore(cleanup)!: remove tool_runtime.rag_tool" (#3877)
Reverts llamastack/llama-stack#3871

This PR broke RAG (even from Responses -- there _is_ a dependency)
2025-10-21 11:22:06 -07:00
Ashwin Bharambe
0e96279bee
chore(cleanup)!: remove tool_runtime.rag_tool (#3871)
Kill the `builtin::rag` tool group completely since it is no longer
targeted. We use the Responses implementation for knowledge_search which
uses the `openai_vector_stores` pathway.

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-10-20 22:26:21 -07:00
Ashwin Bharambe
122de785c4
chore(cleanup)!: kill vector_db references as far as possible (#3864)
There should not be "vector db" anywhere.
2025-10-20 20:06:16 -07:00
Francisco Arceo
48581bf651
chore: Updating how default embedding model is set in stack (#3818)
# What does this PR do?

Refactor setting default vector store provider and embedding model to
use an optional `vector_stores` config in the `StackRunConfig` and clean
up code to do so (had to add back in some pieces of VectorDB). Also
added remote Qdrant and Weaviate to starter distro (based on other PR
where inference providers were added for UX).

New config is simply (default for Starter distro):

```yaml
vector_stores:
  default_provider_id: faiss
  default_embedding_model:
    provider_id: sentence-transformers
    model_id: nomic-ai/nomic-embed-text-v1.5
```

## Test Plan
CI and Unit tests.

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-10-20 14:22:45 -07:00
Ashwin Bharambe
2c43285e22
feat(stores)!: use backend storage references instead of configs (#3697)
**This PR changes configurations in a backward incompatible way.**

Run configs today repeat full SQLite/Postgres snippets everywhere a
store is needed, which means duplicated credentials, extra connection
pools, and lots of drift between files. This PR introduces named storage
backends so the stack and providers can share a single catalog and
reference those backends by name.

## Key Changes

- Add `storage.backends` to `StackRunConfig`, register each KV/SQL
backend once at startup, and validate that references point to the right
family.
- Move server stores under `storage.stores` with lightweight references
(backend + namespace/table) instead of full configs.
- Update every provider/config/doc to use the new reference style;
docs/codegen now surface the simplified YAML.

## Migration

Before:
```yaml
metadata_store:
  type: sqlite
  db_path: ~/.llama/distributions/foo/registry.db
inference_store:
  type: postgres
  host: ${env.POSTGRES_HOST}
  port: ${env.POSTGRES_PORT}
  db: ${env.POSTGRES_DB}
  user: ${env.POSTGRES_USER}
  password: ${env.POSTGRES_PASSWORD}
conversations_store:
  type: postgres
  host: ${env.POSTGRES_HOST}
  port: ${env.POSTGRES_PORT}
  db: ${env.POSTGRES_DB}
  user: ${env.POSTGRES_USER}
  password: ${env.POSTGRES_PASSWORD}
```

After:
```yaml
storage:
  backends:
    kv_default:
      type: kv_sqlite
      db_path: ~/.llama/distributions/foo/kvstore.db
    sql_default:
      type: sql_postgres
      host: ${env.POSTGRES_HOST}
      port: ${env.POSTGRES_PORT}
      db: ${env.POSTGRES_DB}
      user: ${env.POSTGRES_USER}
      password: ${env.POSTGRES_PASSWORD}
  stores:
    metadata:
      backend: kv_default
      namespace: registry
    inference:
      backend: sql_default
      table_name: inference_store
      max_write_queue_size: 10000
      num_writers: 4
    conversations:
      backend: sql_default
      table_name: openai_conversations
```

Provider configs follow the same pattern—for example, a Chroma vector
adapter switches from:

```yaml
providers:
  vector_io:
  - provider_id: chromadb
    provider_type: remote::chromadb
    config:
      url: ${env.CHROMADB_URL}
      kvstore:
        type: sqlite
        db_path: ~/.llama/distributions/foo/chroma.db
```

to:

```yaml
providers:
  vector_io:
  - provider_id: chromadb
    provider_type: remote::chromadb
    config:
      url: ${env.CHROMADB_URL}
      persistence:
        backend: kv_default
        namespace: vector_io::chroma_remote
```

Once the backends are declared, everything else just points at them, so
rotating credentials or swapping to Postgres happens in one place and
the stack reuses a single connection pool.
2025-10-20 13:20:09 -07:00
Shabana Baig
add64e8e2a
feat: Add instructions parameter in response object (#3741)
# Problem
The current inline provider appends the user provided instructions to
messages as a system prompt, but the returned response object does not
contain the instructions field (as specified in the OpenAI responses
spec).

# What does this PR do?
This pull request adds the instruction field to the response object
definition and updates the inline provider. It also ensures that
instructions from previous response is not carried over to the next
response (as specified in the openAI spec).

Closes #[3566](https://github.com/llamastack/llama-stack/issues/3566)

## Test Plan

- Tested manually for change in model response w.r.t supplied
instructions field.
- Added unit test to check that the instructions from previous response
is not carried over to the next response.
- Added integration tests to check instructions parameter in the
returned response object.
- Added new recordings for the integration tests.

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-10-20 13:10:37 -07:00
Ashwin Bharambe
185de61d8e
fix(openai_mixin): no yelling for model listing if API keys are not provided (#3826)
As indicated in the title. Our `starter` distribution enables all remote
providers _very intentionally_ because we believe it creates an easier,
more welcoming experience to new folks using the software. If we do
that, and then slam the logs with errors making them question their life
choices, it is not so good :)

Note that this fix is limited in scope. If you ever try to actually
instantiate the OpenAI client from a code path without an API key being
present, you deserve to fail hard.

## Test Plan

Run `llama stack run starter` with `OPENAI_API_KEY` set. No more wall of
text, just one message saying "listed 96 models".
2025-10-16 10:12:13 -07:00
Ashwin Bharambe
07fc8013eb
fix(tests): reduce some test noise (#3825)
a bunch of logger.info()s are good for server code to help debug in
production, but we don't want them killing our unit test output :)

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-10-16 09:52:16 -07:00
Ashwin Bharambe
f70aa99c97
fix(models)!: always prefix models with provider_id when registering (#3822)
**!!BREAKING CHANGE!!**

The lookup is also straightforward -- we always look for this identifier
and don't try to find a match for something without the provider_id
prefix.

Note that, this ideally means we need to update the `register_model()`
API also (we should kill "identifier" from there) but I am not doing
that as part of this PR.

## Test Plan

Existing unit tests
2025-10-16 06:47:39 -07:00
slekkala1
99141c29b1
feat: Add responses and safety impl extra_body (#3781)
Some checks failed
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 6s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 3s
Test Llama Stack Build / build-single-provider (push) Failing after 4s
Python Package Build Test / build (3.12) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (push) Failing after 9s
Unit Tests / unit-tests (3.13) (push) Failing after 6s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 9s
Test External API and Providers / test-external (venv) (push) Failing after 8s
Test Llama Stack Build / build (push) Failing after 7s
Unit Tests / unit-tests (3.12) (push) Failing after 9s
API Conformance Tests / check-schema-compatibility (push) Successful in 19s
UI Tests / ui-tests (22) (push) Successful in 37s
Pre-commit / pre-commit (push) Successful in 1m33s
# What does this PR do?

Have closed the previous PR due to merge conflicts with multiple PRs
Addressed all comments from
https://github.com/llamastack/llama-stack/pull/3768 (sorry for carrying
over to this one)


## Test Plan
Added UTs and integration tests
2025-10-15 15:01:37 -07:00
Sumanth Kamenani
bc8b377a7c
fix(vector-io): handle missing document_id in insert_chunks (#3521)
Fixed KeyError when chunks don't have document_id in metadata or
chunk_metadata. Updated logging to safely extract document_id using
getattr and RAG memory to handle different document_id locations. Added
test for missing document_id scenarios.

Fixes issue #3494 where /v1/vector-io/insert would crash with KeyError.
Fixed KeyError when chunks don't have document_id in metadata or
chunk_metadata. Updated logging to safely extract document_id using
getattr and RAG memory to handle different document_id locations. Added
test for missing document_id scenarios.

 # What does this PR do?

Fixes a KeyError crash in `/v1/vector-io/insert` when chunks are missing
`document_id` fields. The API
was failing even though `document_id` is optional according to the
schema.

  Closes #3494

  ## Test Plan

  **Before fix:**
  - POST to `/v1/vector-io/insert` with chunks → 500 KeyError
  - Happened regardless of where `document_id` was placed

  **After fix:**
  - Same request works fine → 200 OK
  - Tested with Postman using FAISS backend
  - Added unit test covering missing `document_id` scenarios
2025-10-15 11:02:48 -07:00
Ashwin Bharambe
e9b4278a51
feat(responses)!: improve responses + conversations implementations (#3810)
This PR updates the Conversation item related types and improves a
couple critical parts of the implemenation:

- it creates a streaming output item for the final assistant message
output by
  the model. until now we only added content parts and included that
  message in the final response.

- rewrites the conversation update code completely to account for items
  other than messages (tool calls, outputs, etc.)

## Test Plan

Used the test script from
https://github.com/llamastack/llama-stack-client-python/pull/281 for
this

```
TEST_API_BASE_URL=http://localhost:8321/v1 \
  pytest tests/integration/test_agent_turn_step_events.py::test_client_side_function_tool -xvs
```
2025-10-15 09:36:11 -07:00
slekkala1
ce8ea2f505
chore: Support embedding params from metadata for Vector Store (#3811)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Python Package Build Test / build (3.12) (push) Failing after 2s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 6s
Test External API and Providers / test-external (venv) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 13s
UI Tests / ui-tests (22) (push) Successful in 42s
Pre-commit / pre-commit (push) Successful in 1m34s
# What does this PR do?
Support reading embedding model and dimensions from metadata for vector
store

## Test Plan
Unit Tests
2025-10-15 15:53:36 +02:00
Francisco Arceo
ef4bc70bbe
feat: Enable setting a default embedding model in the stack (#3803)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.12) (push) Failing after 1s
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m28s
# What does this PR do?

Enables automatic embedding model detection for vector stores and by
using a `default_configured` boolean that can be defined in the
`run.yaml`.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
- Unit tests
- Integration tests
- Simple example below:

Spin up the stack:
```bash
uv run llama stack build --distro starter --image-type venv --run
```
Then test with OpenAI's client:
```python
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none")
vs = client.vector_stores.create()
```
Previously you needed:

```python
vs = client.vector_stores.create(
    extra_body={
        "embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
        "embedding_dimension": 384,
    }
)
```

The `extra_body` is now unnecessary.

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-10-14 18:25:13 -07:00
IAN MILLER
007efa6eb5
refactor: replace default all-MiniLM-L6-v2 embedding model by nomic-embed-text-v1.5 in Llama Stack (#3183)
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
The purpose of this PR is to replace the Llama Stack's default embedding
model by nomic-embed-text-v1.5.

These are the key reasons why Llama Stack community decided to switch
from all-MiniLM-L6-v2 to nomic-embed-text-v1.5:
1. The training data for
[all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2#training-data)
includes a lot of data sets with various licensing terms, so it is
tricky to know when/whether it is appropriate to use this model for
commercial applications.
2. The model is not particularly competitive on major benchmarks. For
example, if you look at the [MTEB
Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) and click
on Miscellaneous/BEIR to see English information retrieval accuracy, you
see that the top of the leaderboard is dominated by enormous models but
also that there are many, many models of relatively modest size whith
much higher Retrieval scores. If you want to look closely at the data, I
recommend clicking "Download Table" because it is easier to browse that
way.

More discussion info can be founded
[here](https://github.com/llamastack/llama-stack/issues/2418)

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes #2418 

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
1. Run `./scripts/unit-tests.sh`
2. Integration tests via CI wokrflow

---------

Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
Co-authored-by: Sébastien Han <seb@redhat.com>
2025-10-14 10:44:20 -04:00
Ashwin Bharambe
ecc8a554d2
feat(api)!: support extra_body to embeddings and vector_stores APIs (#3794)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 0s
Python Package Build Test / build (3.12) (push) Failing after 1s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 5s
Test External API and Providers / test-external (venv) (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 10s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m23s
Applies the same pattern from
https://github.com/llamastack/llama-stack/pull/3777 to embeddings and
vector_stores.create() endpoints.

This should _not_ be a breaking change since (a) our tests were already
using the `extra_body` parameter when passing in to the backend (b) but
the backend probably wasn't extracting the parameters correctly. This PR
will fix that.

Updated APIs: `openai_embeddings(), openai_create_vector_store(),
openai_create_vector_store_file_batch()`
2025-10-12 19:01:52 -07:00
ehhuang
06e4cd8e02
feat(api)!: BREAKING CHANGE: support passing extra_body through to providers (#3777)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Python Package Build Test / build (3.12) (push) Failing after 1s
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Vector IO Integration Tests / test-matrix (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 9s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
UI Tests / ui-tests (22) (push) Successful in 38s
Pre-commit / pre-commit (push) Successful in 1m27s
# What does this PR do?
Allows passing through extra_body parameters to inference providers.

With this, we removed the 2 vllm-specific parameters from completions
API into `extra_body`.
Before/After
<img width="1883" height="324" alt="image"
src="https://github.com/user-attachments/assets/acb27c08-c748-46c9-b1da-0de64e9908a1"
/>



closes #2720

## Test Plan
CI and added new test
```
❯ uv run pytest -s -v tests/integration/ --stack-config=server:starter --inference-mode=record -k 'not( builtin_tool or safety_with_image or code_interpreter or test_rag ) and test_openai_completion_guided_choice' --setup=vllm --suite=base --color=yes
Uninstalled 3 packages in 125ms
Installed 3 packages in 19ms
INFO     2025-10-10 14:29:54,317 tests.integration.conftest:118 tests: Applying setup 'vllm' for suite base
INFO     2025-10-10 14:29:54,331 tests.integration.conftest:47 tests: Test stack config type: server
         (stack_config=server:starter)
============================================================================================================== test session starts ==============================================================================================================
platform darwin -- Python 3.12.11, pytest-8.4.2, pluggy-1.6.0 -- /Users/erichuang/projects/llama-stack-1/.venv/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.12.11', 'Platform': 'macOS-15.6.1-arm64-arm-64bit', 'Packages': {'pytest': '8.4.2', 'pluggy': '1.6.0'}, 'Plugins': {'anyio': '4.9.0', 'html': '4.1.1', 'socket': '0.7.0', 'asyncio': '1.1.0', 'json-report': '1.5.0', 'timeout': '2.4.0', 'metadata': '3.1.1', 'cov': '6.2.1', 'nbval': '0.11.0'}}
rootdir: /Users/erichuang/projects/llama-stack-1
configfile: pyproject.toml
plugins: anyio-4.9.0, html-4.1.1, socket-0.7.0, asyncio-1.1.0, json-report-1.5.0, timeout-2.4.0, metadata-3.1.1, cov-6.2.1, nbval-0.11.0
asyncio: mode=Mode.AUTO, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function
collected 285 items / 284 deselected / 1 selected

tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B]
instantiating llama_stack_client
Starting llama stack server with config 'starter' on port 8321...
Waiting for server at http://localhost:8321... (0.0s elapsed)
Waiting for server at http://localhost:8321... (0.5s elapsed)
Waiting for server at http://localhost:8321... (5.1s elapsed)
Waiting for server at http://localhost:8321... (5.6s elapsed)
Waiting for server at http://localhost:8321... (10.1s elapsed)
Waiting for server at http://localhost:8321... (10.6s elapsed)
Server is ready at http://localhost:8321
llama_stack_client instantiated in 11.773s
PASSEDTerminating llama stack server process...
Terminating process 98444 and its group...
Server process and children terminated gracefully


============================================================================================================= slowest 10 durations ==============================================================================================================
11.88s setup    tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B]
3.02s call     tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B]
0.01s teardown tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B]
================================================================================================ 1 passed, 284 deselected, 3 warnings in 16.21s =================================================================================================
```
2025-10-10 16:21:44 -07:00