# What does this PR do?
Resolves#4102
1. Added `web_search_2025_08_26` to the `WebSearchToolTypes` list and
the `OpenAIResponseInputToolWebSearch.type` Literal union
2. No changes needed to tool execution logic - all `web_search` types
map to the same underlying tool
3. Backward compatibility is maintained - existing `web_search`,
`web_search_preview`, and `web_search_preview_2025_03_11` types continue
to work
4. Added an integration test case using {"type":
"web_search_2025_08_26"} to verify it works correctly
5. Updated `docs/docs/providers/openai_responses_limitations.mdx` to
reflect that `web_search_2025_08_26` is now supported.
6. Removed incorrect references to `MOD1/MOD2/MOD3` (which don't exist
in the codebase)
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
---------
Signed-off-by: Aakanksha Duggal <aduggal@redhat.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This dependency has been bothering folks for a long time (cc @leseb). We
really needed it due to "library client" which is primarily used for our
tests and is not a part of the Stack server. Anyone who needs to use the
library client can certainly install `llama-stack-client` in their
environment to make that work.
Updated the notebook references to install `llama-stack-client`
additionally when setting things up.
We'd like to remove the dependence of `llama-stack` on
`llama-stack-client`. This is a necessary step.
A few small cleanups
- Enables `embeddings` now also
- Remove ModelRegistryHelper dependency (unused)
- Consolidate to auth_credential field via RemoteInferenceProviderConfig
- Implement list_models() to fetch from downstream /v1/models
## Test Plan
Tested using this script
https://gist.github.com/ashwinb/6356463d10f989c0682ab3bff8589581
Output:
```
Listing models from downstream server...
Available models: ['passthrough/ollama/nomic-embed-text:latest', 'passthrough/ollama/all-minilm:l6-v2', 'passthrough/ollama/llama3.2-vision:11b', 'passthrough/ollama/llama3.2-vision:latest', 'passthrough/ollama/llama-guard3:1b', 'passthrough/o
llama/llama3.2:1b', 'passthrough/ollama/all-minilm:latest', 'passthrough/ollama/llama3.2:3b', 'passthrough/ollama/llama3.2:3b-instruct-fp16', 'passthrough/bedrock/meta.llama3-1-8b-instruct-v1:0', 'passthrough/bedrock/meta.llama3-1-70b-instruct
-v1:0', 'passthrough/bedrock/meta.llama3-1-405b-instruct-v1:0', 'passthrough/sentence-transformers/nomic-ai/nomic-embed-text-v1.5']
Using LLM model: passthrough/ollama/llama3.2-vision:11b
Making inference request...
Response: 4.
--- Testing streaming ---
Streamed response: ChatCompletionChunk(id='chatcmpl-64', choices=[Choice(delta=ChoiceDelta(content='1', reasoning_content=None, refusal=None, role='assistant', tool_calls=None), finish_reason='', index=0, logprobs=None)], created=1762381674, m
odel='passthrough/ollama/llama3.2-vision:11b', object='chat.completion.chunk', usage=None)
...
5ChatCompletionChunk(id='chatcmpl-64', choices=[Choice(delta=ChoiceDelta(content='', reasoning_content=None, refusal=None, role='assistant', tool_calls=None), finish_reason='stop', index=0, logprobs=None)], created=1762381674, model='passthrou
gh/ollama/llama3.2-vision:11b', object='chat.completion.chunk', usage=None)
```
## What does this PR do?
The starter distribution now comes with all the required packages to
support persistent stores—like the agent store, metadata, and
inference—using PostgreSQL. Users can enable PostgreSQL support by
setting the `ENABLE_POSTGRES_STORE=1` environment variable.
This PR consolidates the functionality from the removed `postgres-demo`
distribution into the starter distribution, reducing maintenance
overhead.
**Closes: #2619**
**Supersedes: #2851** (rebased and updated)
## Changes Made
1. **Added PostgreSQL support to starter distribution**
- New `run-with-postgres-store.yaml` configuration
- Automatic config switching via `ENABLE_POSTGRES_STORE` environment
variable
- Removed separate `postgres-demo` distribution
2. **Updated to new build system**
- Integrated postgres switching logic into Containerfile entrypoint
- Uses new `storage_backends` and `storage_stores` API
- Properly configured both PostgreSQL KV store and SQL store
3. **Updated dependencies**
- Added `psycopg2-binary` and `asyncpg` to starter distribution
- All postgres-related dependencies automatically included
## How to Use
### With Docker (PostgreSQL):
```bash
docker run \
-e ENABLE_POSTGRES_STORE=1 \
-e POSTGRES_HOST=your_postgres_host \
-e POSTGRES_PORT=5432 \
-e POSTGRES_DB=llamastack \
-e POSTGRES_USER=llamastack \
-e POSTGRES_PASSWORD=llamastack \
-e OPENAI_API_KEY=your_key \
llamastack/distribution-starter
```
### PostgreSQL environment variables:
- `POSTGRES_HOST`: Postgres host (default: `localhost`)
- `POSTGRES_PORT`: Postgres port (default: `5432`)
- `POSTGRES_DB`: Postgres database name (default: `llamastack`)
- `POSTGRES_USER`: Postgres username (default: `llamastack`)
- `POSTGRES_PASSWORD`: Postgres password (default: `llamastack`)
## Test Plan
All pre-commit hooks pass (mypy, ruff, distro-codegen)
`llama stack list-deps starter` confirms psycopg2-binary is included
Storage configuration correctly uses PostgreSQL backends
Container builds successfully with postgres support
## Credits
Original work by @leseb in #2851. Rebased and updated by @r-bit-rry to
work with latest main.
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Sébastien Han @leseb
---------
Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Sébastien Han <seb@redhat.com>
RAG aka file search is implemented via the Responses API by specifying
the file-search tool. The backend implementation remains unchanged. This
PR merely removes the directly exposed API surface which allowed users
to directly perform searches from the client.
This facility is now available via the `client.vector_store.search()`
OpenAI compatible API.
- Removes the deprecated agents (sessions and turns) API that was marked
alpha in 0.3.0
- Cleans up unused imports and orphaned types after the API removal
- Removes `SessionNotFoundError` and `AgentTurnInputType` which are no
longer needed
The agents API is completely superseded by the Responses + Conversations
APIs, and the client SDK Agent class already uses those implementations.
Corresponding client-side PR:
https://github.com/llamastack/llama-stack-client-python/pull/295
This PR removes all routes which we had marked deprecated for the 0.3.0
release.
This includes:
- all the `/v1/openai/v1/` routes (the corresponding /v1 routes still
exist of course)
- the /agents API (which is superseded completely by Responses +
Conversations)
- several alpha routes which had a "v1" route to aide transitioning to
"v1alpha"
This is the corresponding client-python change:
https://github.com/llamastack/llama-stack-client-python/pull/294
The llama-stack-client now uses /`v1/openai/v1/models` which returns
OpenAI-compatible model objects with 'id' and 'custom_metadata' fields
instead of the Resource-style 'identifier' field. Updated api_recorder
to handle the new endpoint and modified tests to access model metadata
appropriately. Deleted stale model recordings for re-recording.
**NOTE: CI will be red on this one since it is dependent on
https://github.com/llamastack/llama-stack-client-python/pull/291/files
landing. I verified locally that it is green.**
# What does this PR do?
This API hasn't received any traction and close to zero interest from
the community. Let's revisit in the future if things change.
Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
We need to remove `/v1/openai/v1` paths shortly. There is one trouble --
our current `/v1/openai/v1/models` endpoint provides different data than
`/v1/models`. Unfortunately our tests target the latter (llama-stack
customized) behavior. We need to get to true OpenAI compatibility.
This is step 1: adding `custom_metadata` field to `OpenAIModel` that
includes all the extra stuff we add in the native `/v1/models` response.
This can be extracted on the consumer end by look at
`__pydantic_extra__` or other similar fields.
This PR:
- Adds `custom_metadata` field to `OpenAIModel` class in
`src/llama_stack/apis/models/models.py`
- Modified `openai_list_models()` in
`src/llama_stack/core/routing_tables/models.py` to populate
custom_metadata
Next Steps
1. Update stainless client to use `/v1/openai/v1/models` instead of
`/v1/models`
2. Migrate tests to read from `custom_metadata`
3. Remove `/v1/openai/v1/` prefix entirely and consolidate to single
`/v1/models` endpoint
# What does this PR do?
This seems to be an ancient artifact when we were using readthedocs? Now
docusaurus read the specs directly.
---------
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Allow filtering for v1alpha, v1beta, deprecated and v1. Backward
incompatible change since by default it only returns v1 apis now.
## Test Plan
added unit test
# What does this PR do?
Add rerank API for NVIDIA Inference Provider.
<!-- If resolving an issue, uncomment and update the line below -->
Closes#3278
## Test Plan
Unit test:
```
pytest tests/unit/providers/nvidia/test_rerank_inference.py
```
Integration test:
```
pytest -s -v tests/integration/inference/test_rerank.py --stack-config="inference=nvidia" --rerank-model=nvidia/nvidia/nv-rerankqa-mistral-4b-v3 --env NVIDIA_API_KEY="" --env NVIDIA_BASE_URL="https://integrate.api.nvidia.com"
```
# What does this PR do?
chunk_id in the Chunk class executes actual logic to compute a chunk ID.
This sort of logic should not live in the API spec.
Instead, the providers should be in charge of calling generate_chunk_id,
and pass it to `Chunk`.
this removes the incorrect dependency between Provider impl and API impl
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
- Adds OpenAI files provider
- Note that file content retrieval is pretty limited by `purpose`
https://community.openai.com/t/file-uploads-error-why-can-t-i-download-files-with-purpose-user-data/1357013?utm_source=chatgpt.com
## Test Plan
Modify run yaml to use openai files provider:
```
files:
- provider_id: openai
provider_type: remote::openai
config:
api_key: ${env.OPENAI_API_KEY:=}
metadata_store:
backend: sql_default
table_name: openai_files_metadata
# Then run files tests
❯ uv run --no-sync ./scripts/integration-tests.sh --stack-config server:ci-tests --inference-mode replay --setup ollama --suite base --pattern test_files
```
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR is responsible for making changes to Responses API scheme to
introduce OpenAI compatible prompts there. Change to the API only,
therefore currently no implementation at all. However, the follow up PR
with actual implementation will be submitted after current PR lands.
The need of this functionality was initiated in #3514.
> Note, #3514 is divided on three separate PRs. Current PR is the second
of three.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
CI
# What does this PR do?
Introduces two main fixes to enhance the stability of Responses API when
dealing with tool calling responses and structured outputs.
### Changes Made
1. It added OpenAIResponseOutputMessageMCPCall and ListTools to
OpenAIResponseInput but
https://github.com/llamastack/llama-stack/pull/3810 got merge that did
the same in a different way. Still this PR does it in a way that keep
the sync between OpenAIResponsesOutput and the allowed objects in
OpenAIResponseInput.
2. Add protection in case self.ctx.response_format does not have type
attribute
BREAKING CHANGE: OpenAIResponseInput now uses OpenAIResponseOutput union
type.
This is semantically equivalent - all previously accepted types are
still supported
via the OpenAIResponseOutput union. This improves type consistency and
maintainability.
This patch ensures if max tokens is not defined, then is set to None
instead of 0 when calling openai_chat_completion. This way some
providers (like gemini) that cannot handle the `max_tokens = 0` will not
fail
Issue: #3666
# What does this PR do?
Add static file import system for docs
- Use `remark-code-import` plugin to embed code at build time
- Support importing Python code with syntax highlighting using
`raw-loader` + `ReactMarkdown`
One caveat is that currently when embedding markdown with code used the
syntax highlighting isn't behaving but I'll investigate that in a follow
up.
## Test Plan
Python Example:
<img width="1372" height="995" alt="Screenshot 2025-10-23 at 9 22 18 PM"
src="https://github.com/user-attachments/assets/656d2c78-4d9b-45a4-bd5e-3f8490352b85"
/>
Markdown example:
<img width="1496" height="1070" alt="Screenshot 2025-10-23 at 9 22
38 PM"
src="https://github.com/user-attachments/assets/6c0a07ec-ff7c-45aa-b05f-8c46acd4445c"
/>
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
https://platform.openai.com/docs/api-reference/moderations supports
optional model parameter.
This PR adds support for using moderations API with model=None if a
default shield id is provided via safety config.
## Test Plan
added tests
manual test:
```
> SAFETY_MODEL='together/meta-llama/Llama-Guard-4-12B' uv run llama stack run starter
> curl http://localhost:8321/v1/moderations \
-H "Content-Type: application/json" \
-d '{
"input": [
"hello"
]
}'
```
Migrates k8s run configs to match the updated run configs
- Replace storage.references with storage.stores
- Wrap resources under registered_resources section
- Update provider configs to use persistence with namespace/backend
- Add telemetry and vector_stores top-level sections
- Simplify agent/files metadata store configuration
Bumps [openai](https://github.com/openai/openai-python) from 1.107.0 to
2.5.0.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/openai/openai-python/releases">openai's
releases</a>.</em></p>
<blockquote>
<h2>v2.5.0</h2>
<h2>2.5.0 (2025-10-17)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.4.0...v2.5.0">v2.4.0...v2.5.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> api update (<a
href="8b280d57d6">8b280d5</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li>bump <code>httpx-aiohttp</code> version to 0.1.9 (<a
href="67f2f0afe5">67f2f0a</a>)</li>
</ul>
<h2>v2.4.0</h2>
<h2>2.4.0 (2025-10-16)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.3.0...v2.4.0">v2.3.0...v2.4.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> Add support for gpt-4o-transcribe-diarize on
audio/transcriptions endpoint (<a
href="bdbe9b8f44">bdbe9b8</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li>fix dangling comment (<a
href="da14e99606">da14e99</a>)</li>
<li><strong>internal:</strong> detect missing future annotations with
ruff (<a
href="2672b8f072">2672b8f</a>)</li>
</ul>
<h2>v2.3.0</h2>
<h2>2.3.0 (2025-10-10)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.2.0...v2.3.0">v2.2.0...v2.3.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> comparison filter in/not in (<a
href="aa49f626a6">aa49f62</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li><strong>package:</strong> bump jiter to >=0.10.0 to support
Python 3.14 (<a
href="https://redirect.github.com/openai/openai-python/issues/2618">#2618</a>)
(<a
href="aa445cab5c">aa445ca</a>)</li>
</ul>
<h2>v2.2.0</h2>
<h2>2.2.0 (2025-10-06)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.1.0...v2.2.0">v2.1.0...v2.2.0</a></p>
<h3>Features</h3>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/openai/openai-python/blob/main/CHANGELOG.md">openai's
changelog</a>.</em></p>
<blockquote>
<h2>2.5.0 (2025-10-17)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.4.0...v2.5.0">v2.4.0...v2.5.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> api update (<a
href="8b280d57d6">8b280d5</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li>bump <code>httpx-aiohttp</code> version to 0.1.9 (<a
href="67f2f0afe5">67f2f0a</a>)</li>
</ul>
<h2>2.4.0 (2025-10-16)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.3.0...v2.4.0">v2.3.0...v2.4.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> Add support for gpt-4o-transcribe-diarize on
audio/transcriptions endpoint (<a
href="bdbe9b8f44">bdbe9b8</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li>fix dangling comment (<a
href="da14e99606">da14e99</a>)</li>
<li><strong>internal:</strong> detect missing future annotations with
ruff (<a
href="2672b8f072">2672b8f</a>)</li>
</ul>
<h2>2.3.0 (2025-10-10)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.2.0...v2.3.0">v2.2.0...v2.3.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> comparison filter in/not in (<a
href="aa49f626a6">aa49f62</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li><strong>package:</strong> bump jiter to >=0.10.0 to support
Python 3.14 (<a
href="https://redirect.github.com/openai/openai-python/issues/2618">#2618</a>)
(<a
href="aa445cab5c">aa445ca</a>)</li>
</ul>
<h2>2.2.0 (2025-10-06)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.1.0...v2.2.0">v2.1.0...v2.2.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> dev day 2025 launches (<a
href="38ac0093eb">38ac009</a>)</li>
</ul>
<h3>Bug Fixes</h3>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="513ae76253"><code>513ae76</code></a>
release: 2.5.0 (<a
href="https://redirect.github.com/openai/openai-python/issues/2694">#2694</a>)</li>
<li><a
href="ebf32212f7"><code>ebf3221</code></a>
release: 2.4.0</li>
<li><a
href="e043d7b164"><code>e043d7b</code></a>
chore: fix dangling comment</li>
<li><a
href="25cbb74f83"><code>25cbb74</code></a>
feat(api): Add support for gpt-4o-transcribe-diarize on
audio/transcriptions ...</li>
<li><a
href="8cdfd0650e"><code>8cdfd06</code></a>
codegen metadata</li>
<li><a
href="d5c64434b7"><code>d5c6443</code></a>
codegen metadata</li>
<li><a
href="b20a9e7b81"><code>b20a9e7</code></a>
chore(internal): detect missing future annotations with ruff</li>
<li><a
href="e5f93f5dae"><code>e5f93f5</code></a>
release: 2.3.0</li>
<li><a
href="044878859c"><code>0448788</code></a>
feat(api): comparison filter in/not in</li>
<li><a
href="85a91ade61"><code>85a91ad</code></a>
chore(package): bump jiter to >=0.10.0 to support Python 3.14 (<a
href="https://redirect.github.com/openai/openai-python/issues/2618">#2618</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/openai/openai-python/compare/v1.107.0...v2.5.0">compare
view</a></li>
</ul>
</details>
<br />
[](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
</details>
---------
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
- Extend the model type to include rerank models.
- Implement `rerank()` method in inference router.
- Add `rerank_model_list` to `OpenAIMixin` to enable providers to
register and identify rerank models
- Update documentation.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
```
pytest tests/unit/providers/utils/inference/test_openai_mixin.py
```
# What does this PR do?
Updated quickstart `demo_script.py` to use OpenAI APIs, which is simply:
```python
import io, requests
from openai import OpenAI
url="https://www.paulgraham.com/greatwork.html"
client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none")
vs = client.vector_stores.create()
response = requests.get(url)
pseudo_file = io.BytesIO(str(response.content).encode('utf-8'))
uploaded_file = client.files.create(file=(url, pseudo_file, "text/html"), purpose="assistants")
client.vector_stores.files.create(vector_store_id=vs.id, file_id=uploaded_file.id)
resp = client.responses.create(
model="openai/gpt-4o",
input="How do you do great work? Use the existing knowledge_search tool.",
tools=[{"type": "file_search", "vector_store_ids": [vs.id]}],
include=["file_search_call.results"],
)
print(resp)
```
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>