# What does this PR do?
currently if you have a run yaml without temeletry the following error
is hit:
TypeError: TelemetryAdapter.__init__() missing 1 required positional
argument: 'deps'
this is because the TelemetryAdapter requires a deps arg to be passed.
Pass {} to avoid errors.
Signed-off-by: Charlie Doern <cdoern@redhat.com>
This PR adds support (or is a proposal for) for supporting API KEY
authentication on the Llama Stack server end. `llama-stack-client`
already supports accepting an api_key parameter and passes it down
through every request as an `Authentication: ` header.
Currently, Llama Stack does not propose APIs for handling authentication
or authorization for resources of any kind. Given that, and the fact
that any deployment will typically have _some_ authentication system
present, we simply adopt a delegation mechanism: delegate to an HTTPS
endpoint performing key management / authentication.
It is configured via:
```yaml
server:
auth:
endpoint: <...>
```
in the run.yaml configuration.
## How It Works
When authentication is enabled:
1. Every API request must include an `Authorization: Bearer <token>`
header
2. The server will send a _POST_ validation request to the configured
endpoint with the following payload:
```json
{
"api_key": "<token>",
"request": {
"path": "/api/path",
"headers": { "header1": "value1", ... },
"params": { "param1": "value1", ... }
}
}
```
3. If the authentication endpoint returns a 200 status code, the request
is allowed to proceed
4. If the authentication endpoint returns any other status code, a 401
Unauthorized response is returned
## Test Plan
Unit tests
# What does this PR do?
a user should be able to store a static logging configuration outside of
their environment. This would make sense to store in the run yaml given
that we store other things like server configuration in there.
The environment variable settings override the config settings if both
are available.
The format in the config looks like this:
```
logging_config:
category_levels:
VALID_CATEGORY: VALID_STRING_LOG_LEVEL
```
any specified category out of the following:
`core | server | router | inference | agents | safety | eval | tools |
client`
combined with any of the following log levels:
`debug | info | warning | error | critical`
can be placed in the category_levels list in order to achieve the
desired log level
## Test Plan
Test locally with a run config like the following:
```
version: '2'
image_name: ollama
logging_config:
category_levels:
server: debug
apis:
...
```
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
currently the `inspect` API for providers is really a `list` API. Create
a new `providers` API which has a GET `providers/{provider_id}` inspect
API
which returns "user friendly" configuration to the end user. Also add a
GET `/providers` endpoint which returns the list of providers as
`inspect/providers` does today.
This API follows CRUD and is more intuitive/RESTful.
This work is part of the RFC at
https://github.com/meta-llama/llama-stack/pull/1359
sensitive fields are redacted using `redact_sensetive_fields` on the
server side before returning a response:
<img width="456" alt="Screenshot 2025-03-13 at 4 40 21 PM"
src="https://github.com/user-attachments/assets/9465c221-2a26-42f8-a08a-6ac4a9fecce8"
/>
## Test Plan
using https://github.com/meta-llama/llama-stack-client-python/pull/181 a
user is able to to run the following:
`llama stack build --template ollama --image-type venv`
`llama stack run --image-type venv
~/.llama/distributions/ollama/ollama-run.yaml`
`llama-stack-client providers inspect ollama`
<img width="378" alt="Screenshot 2025-03-13 at 4 39 35 PM"
src="https://github.com/user-attachments/assets/8273d05d-8bc3-44c6-9e4b-ef95e48d5466"
/>
also, was able to run the new test_list integration test locally with
ollama:
<img width="1509" alt="Screenshot 2025-03-13 at 11 03 40 AM"
src="https://github.com/user-attachments/assets/9b9db166-f02f-45b0-86a4-306d85149bc8"
/>
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
This PR adds back the changes in #1300 which were reverted in #1476 .
It also adds logic to preserve context variables across asyncio
boundary. this is needed with the library client since the async
generator logic yields control to code outside the event loop, and on
resuming, does not have the same context as before and this requires
preserving the context vars.
address #1477
## Test Plan
```
curl --request POST \
--url http://localhost:8321/v1/inference/chat-completion \
--header 'content-type: application/json' \
--data '{
"model_id": "meta-llama/Llama-3.1-70B-Instruct",
"messages": [
{
"role": "user",
"content": {
"type": "text",
"text": "where do humans live"
}
}
],
"stream": false
}' | jq .
{
"metrics": [
{
"trace_id": "kCZwO3tyQC-FuAGb",
"span_id": "bsP_5a5O",
"timestamp": "2025-03-11T16:47:38.549084Z",
"attributes": {
"model_id": "meta-llama/Llama-3.1-70B-Instruct",
"provider_id": "fireworks"
},
"type": "metric",
"metric": "prompt_tokens",
"value": 10,
"unit": "tokens"
},
{
"trace_id": "kCZwO3tyQC-FuAGb",
"span_id": "bsP_5a5O",
"timestamp": "2025-03-11T16:47:38.549449Z",
"attributes": {
"model_id": "meta-llama/Llama-3.1-70B-Instruct",
"provider_id": "fireworks"
},
"type": "metric",
"metric": "completion_tokens",
"value": 369,
"unit": "tokens"
},
{
"trace_id": "kCZwO3tyQC-FuAGb",
"span_id": "bsP_5a5O",
"timestamp": "2025-03-11T16:47:38.549457Z",
"attributes": {
"model_id": "meta-llama/Llama-3.1-70B-Instruct",
"provider_id": "fireworks"
},
"type": "metric",
"metric": "total_tokens",
"value": 379,
"unit": "tokens"
}
],
"completion_message": {
"role": "assistant",
"content": "Humans live on the planet Earth, specifically on its landmasses and in its oceans. Here's a breakdown of where humans live:\n\n1. **Continents:** Humans inhabit all seven continents:\n\t* Africa\n\t* Antarctica ( temporary residents, mostly scientists and researchers)\n\t* Asia\n\t* Australia\n\t* Europe\n\t* North America\n\t* South America\n2. **Countries:** There are 196 countries recognized by the United Nations, and humans live in almost all of them.\n3. **Cities and towns:** Many humans live in urban areas, such as cities and towns, which are often located near coastlines, rivers, or other bodies of water.\n4. **Rural areas:** Some humans live in rural areas, such as villages, farms, and countryside.\n5. **Islands:** Humans inhabit many islands around the world, including those in the Pacific, Indian, and Atlantic Oceans.\n6. **Mountains and highlands:** Humans live in mountainous regions, such as the Himalayas, the Andes, and the Rocky Mountains.\n7. **Deserts:** Some humans live in desert regions, such as the Sahara, the Mojave, and the Atacama.\n8. **Coastal areas:** Many humans live in coastal areas, such as beaches, ports, and coastal cities.\n9. **Underwater habitats:** A few humans live in underwater habitats, such as research stations and submarines.\n10. **Space:** A small number of humans have lived in space, including astronauts on the International Space Station and those who have visited the Moon.\n\nOverall, humans can be found living in almost every environment on Earth, from the frozen tundra to the hottest deserts, and from the highest mountains to the deepest oceans.",
"stop_reason": "end_of_turn",
"tool_calls": []
},
"logprobs": null
}
```
Orignal repro no longer showing any error:
```
LLAMA_STACK_DISABLE_VERSION_CHECK=true llama stack run ~/.llama/distributions/fireworks/fireworks-run.yaml
python -m examples.agents.e2e_loop_with_client_tools localhost 8321
```
client logs:
https://gist.github.com/dineshyv/047c7e87b18a5792aa660e311ea53166
server logs:
https://gist.github.com/dineshyv/97a2174099619e9916c7c490be26e559
# What does this PR do?
uvicorn has a `log_level` arg in uvicorn.run, pass in the effective
level set by the logger.
Additionally, third party libraries like httpx are using our logging
format, but not honoring our log level.
This seems unintended, so loop through all items in the loggerDict and
apply the same log level as what we have set.
## Test Plan
before:
```
llama stack run --image-type venv ~/.llama/distributions/ollama/ollama-run.yaml
Environment variable LLAMA_STACK_LOGGING found: all=warn
Using virtual environment: /Users/charliedoern/projects/Documents/llama-stack/venv
+ python -m llama_stack.distribution.server.server --yaml-config /Users/charliedoern/.llama/distributions/ollama/ollama-run.yaml --port 8321
Environment variable LLAMA_STACK_LOGGING found: all=warn
WARNING 2025-03-10 16:05:49,706 root:71 uncategorized: Warning: `bwrap` is not available. Code interpreter tool will
not work correctly.
INFO 2025-03-10 16:05:49,916 datasets:54 uncategorized: PyTorch version 2.5.1 available.
INFO 2025-03-10 16:05:50,010 httpx:1740 uncategorized: HTTP Request: GET http://localhost:11434/api/ps "HTTP/1.1 200
OK"
INFO 2025-03-10 16:05:50,297 httpx:1740 uncategorized: HTTP Request: POST http://localhost:11434/api/pull "HTTP/1.1
200 OK"
INFO 2025-03-10 16:05:50,314 httpx:1740 uncategorized: HTTP Request: GET http://localhost:11434/api/tags "HTTP/1.1
200 OK"
INFO: Started server process [89663]
INFO: Waiting for application startup.
INFO: ASGI 'lifespan' protocol appears unsupported.
INFO: Application startup complete.
INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
```
after:
```
llama stack run --image-type venv ~/.llama/distributions/ollama/ollama-run.yaml
Environment variable LLAMA_STACK_LOGGING found: all=warn
Using virtual environment: /Users/charliedoern/projects/Documents/llama-stack/venv
+ python -m llama_stack.distribution.server.server --yaml-config /Users/charliedoern/.llama/distributions/ollama/ollama-run.yaml --port 8321
Environment variable LLAMA_STACK_LOGGING found: all=warn
WARNING 2025-03-10 16:05:20,429 root:71 uncategorized: Warning: `bwrap` is not available. Code interpreter tool will
not work correctly.
INFO 2025-03-10 16:05:20,639 datasets:54 uncategorized: PyTorch version 2.5.1 available.
```
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
If implementation raises CancelledError (e.g. when it runs its own async
loop for jobs), the main server shutdown handler gets confused and
doesn't attempt to shut down the main loop tasks.
While at it, also fixing the following failure when this happens:
```
UnboundLocalError: cannot access local variable 'loop' where it is not
associated with a value
```
Shutdown handlers were not running because lifespan logic was broken
since ~Oct 2024. Fixed that too and enforcing `lifespan` now (making
sure server will crash when it fails to interact with app through
middleware).
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
Spotted while working on
https://github.com/meta-llama/llama-stack/pull/1437
One way to trigger it without the PR above is to add `raise
CancelledError` in
any of the running providers' `shutdown` methods; then `kill -INT <pid>`
the
server process.
Validated this with the following test patch:
```
diff --git a/llama_stack/distribution/server/server.py b/llama_stack/distribution/server/server.py
index b85c463a..10dad83e 100644
--- a/llama_stack/distribution/server/server.py
+++ b/llama_stack/distribution/server/server.py
@@ -174,6 +174,7 @@ def handle_signal(app, signum, _) -> None:
except asyncio.CancelledError:
pass
finally:
+ logger.info("Stopping event loop")
loop.stop()
loop = asyncio.get_running_loop()
diff --git a/llama_stack/providers/inline/post_training/torchtune/post_training.py b/llama_stack/providers/inline/post_training/torchtune/post_training.py
index b837362d..163f43d8 100644
--- a/llama_stack/providers/inline/post_training/torchtune/post_training.py
+++ b/llama_stack/providers/inline/post_training/torchtune/post_training.py
@@ -3,6 +3,7 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
+import asyncio
from datetime import datetime
from typing import Any, Dict, Optional
@@ -43,6 +44,9 @@ class TorchtunePostTrainingImpl:
self.jobs = {}
self.checkpoints_dict = {}
+ async def shutdown(self) -> None:
+ raise asyncio.CancelledError("Shutdown")
+
async def supervised_fine_tune(
self,
job_uuid: str,
```
Without the fix:
```
INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
INFO: Shutting down
INFO: Finished server process [52099]
INFO 2025-03-07 23:25:33,548 __main__:143 server: Received signal SIGINT (2). Exiting gracefully...
INFO 2025-03-07 23:25:33,550 __main__:150 server: Shutting down DatasetsRoutingTable
INFO 2025-03-07 23:25:33,551 __main__:177 server: Stopping event loop
ERROR 2025-03-07 23:25:33,552 asyncio:1785 uncategorized: unhandled exception during asyncio.run() shutdown
task: <Task finished name='Task-12' coro=<handle_signal.<locals>.shutdown() done, defined at
/home/ec2-user/src/llama-stack/schedule/llama_stack/distribution/server/server.py:145>
exception=UnboundLocalError("cannot access local variable 'loop' where it is not associated with a value")>
╭───────────────────────────────────── Traceback (most recent call last) ─────────────────────────────────────╮
│ /home/ec2-user/src/llama-stack/schedule/llama_stack/distribution/server/server.py:178 in shutdown │
│ │
│ 175 │ │ │ pass │
│ 176 │ │ finally: │
│ 177 │ │ │ logger.info("Stopping event loop") │
│ ❱ 178 │ │ │ loop.stop() │
│ 179 │ │
│ 180 │ loop = asyncio.get_running_loop() │
│ 181 │ loop.create_task(shutdown()) │
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
UnboundLocalError: cannot access local variable 'loop' where it is not associated with a value
```
With the fix, now seeing the following messages when the server is
killed:
```
INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
INFO: Shutting down
INFO: Finished server process [50836]
INFO 2025-03-07 23:20:35,182 __main__:143 server: Received signal SIGINT (2). Exiting gracefully...
INFO 2025-03-07 23:20:35,184 __main__:149 server: Shutting down DatasetsRoutingTable
ERROR 2025-03-07 23:20:35,185 __main__:158 server: Failed to shutdown DatasetsRoutingTable: {CancelledError()}
╭───────────────────────────────────── Traceback (most recent call last) ─────────────────────────────────────╮
│ /usr/lib64/python3.11/asyncio/tasks.py:476 in wait_for │
│ │
│ 473 │ try: │
│ 474 │ │ # wait until the future completes or the timeout │
│ 475 │ │ try: │
│ ❱ 476 │ │ │ await waiter │
│ 477 │ │ except exceptions.CancelledError: │
│ 478 │ │ │ if fut.done(): │
│ 479 │ │ │ │ return fut.result() │
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
CancelledError
During handling of the above exception, another exception occurred:
╭───────────────────────────────────── Traceback (most recent call last) ─────────────────────────────────────╮
│ /home/ec2-user/src/llama-stack/schedule/llama_stack/distribution/server/server.py:152 in shutdown │
│ │
│ 149 │ │ │ logger.info("Shutting down %s", impl_name) │
│ 150 │ │ │ try: │
│ 151 │ │ │ │ if hasattr(impl, "shutdown"): │
│ ❱ 152 │ │ │ │ │ await asyncio.wait_for(impl.shutdown(), timeout=5) │
│ 153 │ │ │ │ else: │
│ 154 │ │ │ │ │ logger.warning("No shutdown method for %s", impl_name) │
│ 155 │ │ │ except asyncio.TimeoutError: │
│ │
│ /usr/lib64/python3.11/asyncio/tasks.py:479 in wait_for │
│ │
│ 476 │ │ │ await waiter │
│ 477 │ │ except exceptions.CancelledError: │
│ 478 │ │ │ if fut.done(): │
│ ❱ 479 │ │ │ │ return fut.result() │
│ 480 │ │ │ else: │
│ 481 │ │ │ │ fut.remove_done_callback(cb) │
│ 482 │ │ │ │ # We must ensure that the task is not running │
│ │
│ /home/ec2-user/src/llama-stack/schedule/llama_stack/distribution/routers/routing_tables.py:131 in shutdown │
│ │
│ 128 │ │ │ elif api == Api.tool_runtime: │
│ 129 │ │ │ │ p.tool_store = self │
│ 130 │ │
│ ❱ 131 │ async def shutdown(self) -> None: │
│ 132 │ │ for p in self.impls_by_provider_id.values(): │
│ 133 │ │ │ await p.shutdown() │
│ 134 │
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
CancelledError
INFO 2025-03-07 23:20:35,295 __main__:149 server: Shutting down DatasetIORouter
INFO 2025-03-07 23:20:35,296 __main__:149 server: Shutting down ScoringFunctionsRoutingTable
INFO 2025-03-07 23:20:35,297 __main__:149 server: Shutting down ScoringRouter
INFO 2025-03-07 23:20:35,298 __main__:149 server: Shutting down ModelsRoutingTable
INFO 2025-03-07 23:20:35,299 __main__:149 server: Shutting down InferenceRouter
INFO 2025-03-07 23:20:35,300 __main__:149 server: Shutting down ShieldsRoutingTable
INFO 2025-03-07 23:20:35,300 __main__:149 server: Shutting down SafetyRouter
INFO 2025-03-07 23:20:35,301 __main__:149 server: Shutting down VectorDBsRoutingTable
INFO 2025-03-07 23:20:35,302 __main__:149 server: Shutting down VectorIORouter
INFO 2025-03-07 23:20:35,303 __main__:149 server: Shutting down ToolGroupsRoutingTable
INFO 2025-03-07 23:20:35,304 __main__:149 server: Shutting down ToolRuntimeRouter
INFO 2025-03-07 23:20:35,304 __main__:149 server: Shutting down MetaReferenceAgentsImpl
INFO 2025-03-07 23:20:35,305 __main__:149 server: Shutting down TelemetryAdapter
INFO 2025-03-07 23:20:35,306 __main__:149 server: Shutting down TorchtunePostTrainingImpl
ERROR 2025-03-07 23:20:35,307 __main__:158 server: Failed to shutdown TorchtunePostTrainingImpl:
{CancelledError('Shutdown')}
╭───────────────────────────────────── Traceback (most recent call last) ─────────────────────────────────────╮
│ /home/ec2-user/src/llama-stack/schedule/llama_stack/distribution/server/server.py:152 in shutdown │
│ │
│ 149 │ │ │ logger.info("Shutting down %s", impl_name) │
│ 150 │ │ │ try: │
│ 151 │ │ │ │ if hasattr(impl, "shutdown"): │
│ ❱ 152 │ │ │ │ │ await asyncio.wait_for(impl.shutdown(), timeout=5) │
│ 153 │ │ │ │ else: │
│ 154 │ │ │ │ │ logger.warning("No shutdown method for %s", impl_name) │
│ 155 │ │ │ except asyncio.TimeoutError: │
│ │
│ /usr/lib64/python3.11/asyncio/tasks.py:489 in wait_for │
│ │
│ 486 │ │ │ │ raise │
│ 487 │ │ │
│ 488 │ │ if fut.done(): │
│ ❱ 489 │ │ │ return fut.result() │
│ 490 │ │ else: │
│ 491 │ │ │ fut.remove_done_callback(cb) │
│ 492 │ │ │ # We must ensure that the task is not running │
│ │
│ /home/ec2-user/src/llama-stack/schedule/llama_stack/providers/inline/post_training/torchtune/post_training. │
│ py:48 in shutdown │
│ │
│ 45 │ │ self.checkpoints_dict = {} │
│ 46 │ │
│ 47 │ async def shutdown(self) -> None: │
│ ❱ 48 │ │ raise asyncio.CancelledError("Shutdown") │
│ 49 │ │
│ 50 │ async def supervised_fine_tune( │
│ 51 │ │ self, │
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
CancelledError: Shutdown
INFO 2025-03-07 23:20:35,352 __main__:149 server: Shutting down BenchmarksRoutingTable
INFO 2025-03-07 23:20:35,353 __main__:149 server: Shutting down EvalRouter
INFO 2025-03-07 23:20:35,354 __main__:149 server: Shutting down DistributionInspectImpl
INFO 2025-03-07 23:20:35,355 __main__:177 server: Stopping event loop
Traceback (most recent call last):
File "<frozen runpy>", line 198, in _run_module_as_main
File "<frozen runpy>", line 88, in _run_code
File "/home/ec2-user/src/llama-stack/schedule/llama_stack/distribution/server/server.py", line 488, in <module>
main()
File "/home/ec2-user/src/llama-stack/schedule/llama_stack/distribution/server/server.py", line 476, in main
uvicorn.run(**uvicorn_config)
File "/home/ec2-user/src/llama-stack/schedule/venv/lib64/python3.11/site-packages/uvicorn/main.py", line 579, in run
server.run()
File "/home/ec2-user/src/llama-stack/schedule/venv/lib64/python3.11/site-packages/uvicorn/server.py", line 66, in run
return asyncio.run(self.serve(sockets=sockets))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/lib64/python3.11/asyncio/runners.py", line 189, in run
with Runner(debug=debug) as runner:
File "/usr/lib64/python3.11/asyncio/runners.py", line 63, in __exit__
self.close()
File "/usr/lib64/python3.11/asyncio/runners.py", line 71, in close
_cancel_all_tasks(loop)
File "/usr/lib64/python3.11/asyncio/runners.py", line 201, in _cancel_all_tasks
loop.run_until_complete(tasks.gather(*to_cancel, return_exceptions=True))
File "/usr/lib64/python3.11/asyncio/base_events.py", line 652, in run_until_complete
raise RuntimeError('Event loop stopped before Future completed.')
RuntimeError: Event loop stopped before Future completed.
++ error_handler 104
++ echo 'Error occurred in script at line: 104'
Error occurred in script at line: 104
++ exit 1
```
With all patches included, the shutdown now looks as follows:
```
$ kill -INT $(ps ax | grep llama_stack.distribution.server.server | grep -v nvim | awk -e '{print $1}' | sort | head -n 1)
```
```
20:56:09.308 [START]
INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
INFO: Shutting down
INFO: Waiting for application shutdown.
INFO 2025-03-10 20:56:43,961 __main__:140 server: Shutting down
INFO 2025-03-10 20:56:43,962 __main__:124 server: Shutting down DatasetsRoutingTable
INFO 2025-03-10 20:56:43,964 __main__:124 server: Shutting down DatasetIORouter
INFO 2025-03-10 20:56:43,965 __main__:124 server: Shutting down ScoringFunctionsRoutingTable
INFO 2025-03-10 20:56:43,966 __main__:124 server: Shutting down ScoringRouter
INFO 2025-03-10 20:56:43,967 __main__:124 server: Shutting down ModelsRoutingTable
INFO 2025-03-10 20:56:43,968 __main__:124 server: Shutting down InferenceRouter
INFO 2025-03-10 20:56:43,969 __main__:124 server: Shutting down ShieldsRoutingTable
INFO 2025-03-10 20:56:43,971 __main__:124 server: Shutting down SafetyRouter
INFO 2025-03-10 20:56:43,972 __main__:124 server: Shutting down VectorDBsRoutingTable
INFO 2025-03-10 20:56:43,973 __main__:124 server: Shutting down VectorIORouter
INFO 2025-03-10 20:56:43,974 __main__:124 server: Shutting down ToolGroupsRoutingTable
INFO 2025-03-10 20:56:43,975 __main__:124 server: Shutting down ToolRuntimeRouter
INFO 2025-03-10 20:56:43,976 __main__:124 server: Shutting down MetaReferenceAgentsImpl
INFO 2025-03-10 20:56:43,977 __main__:124 server: Shutting down TelemetryAdapter
INFO 2025-03-10 20:56:43,978 __main__:124 server: Shutting down TorchtunePostTrainingImpl
WARNING 2025-03-10 20:56:43,979 __main__:129 server: No shutdown method for TorchtunePostTrainingImpl
INFO 2025-03-10 20:56:43,979 __main__:124 server: Shutting down BenchmarksRoutingTable
INFO 2025-03-10 20:56:43,980 __main__:124 server: Shutting down EvalRouter
INFO 2025-03-10 20:56:43,981 __main__:124 server: Shutting down DistributionInspectImpl
INFO: Application shutdown complete.
INFO: Finished server process [33862]
```
[//]: # (## Documentation)
---------
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
Reverts meta-llama/llama-stack#1252
The above PR breaks the following invocation:
```bash
llama stack run ~/.llama/distributions/together/together-run.yaml
```
# What does this PR do?
Users prefer to rely on the main CLI rather than invoking the server
through a Python module. Users interact with a high-level CLI rather
than needing to know internal module structures.
Now, when running llama stack run <path-to-config>, the server will
attempt to use the system package or a virtual environment if one is
active.
This also eliminates the current process dependency chain when running
from a virtual environment:
-> llama stack run
-> start_env.sh
-> python -m server...
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
Run:
```
ollama run llama3.2:3b-instruct-fp16 --keepalive=2m &
llama stack run ./llama_stack/templates/ollama/run.yaml --disable-ipv6
```
Notice that the server starts and shutdowns normally.
[//]: # (## Documentation)
---------
Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
Concurrent requests should not trample (or reuse) each others' provider
data. Provider data should be scoped to each request.
## Test Plan
Set the uvicorn server to have a single worker process + thread by
updating the config:
```python
uvicorn_config = {
...
"workers": 1,
"loop": "asyncio",
}
```
Then perform the following steps on `origin/main` (without this change).
(1) Run the server using `llama stack run dev` without having
`FIREWORKS_API_KEY` in the environment.
(2) Run a test by specifying the FIREWORKS_API_KEY env var so it gets
stored in the thread local
```
pytest -s -v tests/integration/inference/test_text_inference.py \
--stack-config http://localhost:8321 \
--text-model accounts/fireworks/models/llama-v3p1-8b-instruct \
-k test_text_chat_completion_with_tool_calling_and_streaming \
--env FIREWORKS_API_KEY=<...>
```
Ensure you don't have any other API keys in the environment (otherwise
the bug will not reproduce due to other specifics in our testing code.)
Verify this works.
(3) Run the same command again without specifying FIREWORKS_API_KEY. See
that the request actually succeeds when it *should have failed*.
----
Now do the same tests on this branch, verify step (3) results in
failure.
Finally, run the full `test_text_inference.py` test suite with this
change, verify it succeeds.
# What does this PR do?
This commit introduces a new logging system that allows loggers to be
assigned
a category while retaining the logger name based on the file name. The
log
format includes both the logger name and the category, producing output
like:
```
INFO 2025-03-03 21:44:11,323 llama_stack.distribution.stack:103 [core]: Tool_groups: builtin::websearch served by
tavily-search
```
Key features include:
- Category-based logging: Loggers can be assigned a category (e.g.,
"core", "server") when programming. The logger can be loaded like
this: `logger = get_logger(name=__name__, category="server")`
- Environment variable control: Log levels can be configured
per-category using the
`LLAMA_STACK_LOGGING` environment variable. For example:
`LLAMA_STACK_LOGGING="server=DEBUG;core=debug"` enables DEBUG level for
the "server"
and "core" categories.
- `LLAMA_STACK_LOGGING="all=debug"` sets DEBUG level globally for all
categories and
third-party libraries.
This provides fine-grained control over logging levels while maintaining
a clean and
informative log format.
The formatter uses the rich library which provides nice colors better
stack traces like so:
```
ERROR 2025-03-03 21:49:37,124 asyncio:1758 [uncategorized]: unhandled exception during asyncio.run() shutdown
task: <Task finished name='Task-16' coro=<handle_signal.<locals>.shutdown() done, defined at
/Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py:146>
exception=UnboundLocalError("local variable 'loop' referenced before assignment")>
╭────────────────────────────────────── Traceback (most recent call last) ───────────────────────────────────────╮
│ /Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py:178 in shutdown │
│ │
│ 175 │ │ except asyncio.CancelledError: │
│ 176 │ │ │ pass │
│ 177 │ │ finally: │
│ ❱ 178 │ │ │ loop.stop() │
│ 179 │ │
│ 180 │ loop = asyncio.get_running_loop() │
│ 181 │ loop.create_task(shutdown()) │
╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
UnboundLocalError: local variable 'loop' referenced before assignment
```
Co-authored-by: Ashwin Bharambe <@ashwinb>
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
```
python -m llama_stack.distribution.server.server --yaml-config ./llama_stack/templates/ollama/run.yaml
INFO 2025-03-03 21:55:35,918 __main__:365 [server]: Using config file: llama_stack/templates/ollama/run.yaml
INFO 2025-03-03 21:55:35,925 __main__:378 [server]: Run configuration:
INFO 2025-03-03 21:55:35,928 __main__:380 [server]: apis:
- agents
```
[//]: # (## Documentation)
---------
Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
A self-respecting server needs good observability which starts with
configurable logging. Llama Stack had little until now. This PR adds a
`logcat` facility towards that. Callsites look like:
```python
logcat.debug("inference", f"params to ollama: {params}")
```
- the first parameter is a category. there is a static list of
categories in `llama_stack/logcat.py`
- each category can be associated with a log-level which can be
configured via the `LLAMA_STACK_LOGGING` env var.
- a value `LLAMA_STACK_LOGGING=inference=debug;server=info"` does the
obvious thing. there is a special key called `all` which is an alias for
all categories
## Test Plan
Ran with `LLAMA_STACK_LOGGING="all=debug" llama stack run fireworks` and
saw the following:

Hit it with a client-sdk test case and saw this:

# What does this PR do?
- Introduced logging in `StackRun` to replace print-based messages
- Improved error handling for config file loading and parsing
- Replaced `cprint` with `logger.error` for consistent error messaging
- Ensured logging is used in `server.py` for startup, shutdown, and
runtime messages
- Added missing exception handling for invalid providers
Signed-off-by: Sébastien Han <seb@redhat.com>
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
- Configured ruff linter to automatically fix import sorting issues.
- Set --exit-non-zero-on-fix to ensure non-zero exit code when fixes are
applied.
- Enabled the 'I' selection to focus on import-related linting rules.
- Ran the linter, and formatted all codebase imports accordingly.
- Removed the black dep from the "dev" group since we use ruff
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
This commit enhances the signal handling mechanism in the server by
improving the `handle_signal` (previously handle_sigint) function. It
now properly retrieves the signal name, ensuring clearer logging when a
termination signal is received. Additionally, it cancels all running
tasks and waits for their completion before stopping the event loop,
allowing for a more graceful shutdown. Support for handling
SIGTERM has also been added alongside SIGINT.
Before the changes, handle_sigint used asyncio.run(run_shutdown()).
However, asyncio.run() is meant to start a new event loop, and calling
it inside an existing one (like when running Uvicorn) raises an error.
The fix replaces asyncio.run(run_shutdown()) with an async function
scheduled on the existing loop using loop.create_task(shutdown()). This
ensures that the shutdown coroutine runs within the current event loop
instead of trying to create a new one.
Furthermore, this commit updates the project dependencies. `fastapi` and
`uvicorn` have been added to the development dependencies in
`pyproject.toml` and `uv.lock`, ensuring that the necessary packages are
available for development and execution.
Closes: https://github.com/meta-llama/llama-stack/issues/1043
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
Run a server and send SIGINT:
```
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m llama_stack.distribution.server.server --yaml-config ./llama_stack/templates/ollama/run.yaml
Using config file: llama_stack/templates/ollama/run.yaml
Run configuration:
apis:
- agents
- datasetio
- eval
- inference
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
container_image: null
datasets: []
eval_tasks: []
image_name: ollama
metadata_store:
db_path: /Users/leseb/.llama/distributions/ollama/registry.db
namespace: null
type: sqlite
models:
- metadata: {}
model_id: meta-llama/Llama-3.2-3B-Instruct
model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType
- llm
provider_id: ollama
provider_model_id: null
- metadata:
embedding_dimension: 384
model_id: all-MiniLM-L6-v2
model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType
- embedding
provider_id: sentence-transformers
provider_model_id: null
providers:
agents:
- config:
persistence_store:
db_path: /Users/leseb/.llama/distributions/ollama/agents_store.db
namespace: null
type: sqlite
provider_id: meta-reference
provider_type: inline::meta-reference
datasetio:
- config: {}
provider_id: huggingface
provider_type: remote::huggingface
- config: {}
provider_id: localfs
provider_type: inline::localfs
eval:
- config: {}
provider_id: meta-reference
provider_type: inline::meta-reference
inference:
- config:
url: http://localhost:11434
provider_id: ollama
provider_type: remote::ollama
- config: {}
provider_id: sentence-transformers
provider_type: inline::sentence-transformers
safety:
- config: {}
provider_id: llama-guard
provider_type: inline::llama-guard
scoring:
- config: {}
provider_id: basic
provider_type: inline::basic
- config: {}
provider_id: llm-as-judge
provider_type: inline::llm-as-judge
- config:
openai_api_key: '********'
provider_id: braintrust
provider_type: inline::braintrust
telemetry:
- config:
service_name: llama-stack
sinks: console,sqlite
sqlite_db_path: /Users/leseb/.llama/distributions/ollama/trace_store.db
provider_id: meta-reference
provider_type: inline::meta-reference
tool_runtime:
- config:
api_key: '********'
max_results: 3
provider_id: brave-search
provider_type: remote::brave-search
- config:
api_key: '********'
max_results: 3
provider_id: tavily-search
provider_type: remote::tavily-search
- config: {}
provider_id: code-interpreter
provider_type: inline::code-interpreter
- config: {}
provider_id: rag-runtime
provider_type: inline::rag-runtime
vector_io:
- config:
kvstore:
db_path: /Users/leseb/.llama/distributions/ollama/faiss_store.db
namespace: null
type: sqlite
provider_id: faiss
provider_type: inline::faiss
scoring_fns: []
server:
port: 8321
tls_certfile: null
tls_keyfile: null
shields: []
tool_groups:
- args: null
mcp_endpoint: null
provider_id: tavily-search
toolgroup_id: builtin::websearch
- args: null
mcp_endpoint: null
provider_id: rag-runtime
toolgroup_id: builtin::rag
- args: null
mcp_endpoint: null
provider_id: code-interpreter
toolgroup_id: builtin::code_interpreter
vector_dbs: []
version: '2'
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:213: Resolved 31 providers
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-inference => ollama
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-inference => sentence-transformers
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: models => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inference => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-vector_io => faiss
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-safety => llama-guard
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: shields => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: safety => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: vector_dbs => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: vector_io => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-tool_runtime => brave-search
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-tool_runtime => tavily-search
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-tool_runtime => code-interpreter
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-tool_runtime => rag-runtime
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: tool_groups => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: tool_runtime => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: agents => meta-reference
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-datasetio => huggingface
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-datasetio => localfs
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: datasets => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: datasetio => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: telemetry => meta-reference
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-scoring => basic
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-scoring => llm-as-judge
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-scoring => braintrust
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: scoring_functions => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: scoring => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-eval => meta-reference
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: eval_tasks => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: eval => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inspect => __builtin__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:216:
INFO 2025-02-12 10:21:03,723 llama_stack.providers.remote.inference.ollama.ollama:148: checking connectivity to Ollama at `http://localhost:11434`...
INFO 2025-02-12 10:21:03,734 httpx:1740: HTTP Request: GET http://localhost:11434/api/ps "HTTP/1.1 200 OK"
INFO 2025-02-12 10:21:03,843 faiss.loader:148: Loading faiss.
INFO 2025-02-12 10:21:03,865 faiss.loader:150: Successfully loaded faiss.
INFO 2025-02-12 10:21:03,868 faiss:173: Failed to load GPU Faiss: name 'GpuIndexIVFFlat' is not defined. Will not load constructor refs for GPU indexes.
Warning: `bwrap` is not available. Code interpreter tool will not work correctly.
INFO 2025-02-12 10:21:04,315 datasets:54: PyTorch version 2.6.0 available.
INFO 2025-02-12 10:21:04,556 httpx:1740: HTTP Request: GET http://localhost:11434/api/ps "HTTP/1.1 200 OK"
INFO 2025-02-12 10:21:04,557 llama_stack.providers.utils.inference.embedding_mixin:42: Loading sentence transformer for all-MiniLM-L6-v2...
INFO 2025-02-12 10:21:07,202 sentence_transformers.SentenceTransformer:210: Use pytorch device_name: mps
INFO 2025-02-12 10:21:07,202 sentence_transformers.SentenceTransformer:218: Load pretrained SentenceTransformer: all-MiniLM-L6-v2
INFO 2025-02-12 10:21:09,500 llama_stack.distribution.stack:102: Models: all-MiniLM-L6-v2 served by sentence-transformers
INFO 2025-02-12 10:21:09,500 llama_stack.distribution.stack:102: Models: meta-llama/Llama-3.2-3B-Instruct served by ollama
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: basic::equality served by basic
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: basic::regex_parser_multiple_choice_answer served by basic
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: basic::subset_of served by basic
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::answer-correctness served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::answer-relevancy served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::answer-similarity served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-entity-recall served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-precision served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-recall served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-relevancy served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::factuality served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::faithfulness served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: llm-as-judge::405b-simpleqa served by llm-as-judge
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: llm-as-judge::base served by llm-as-judge
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Tool_groups: builtin::code_interpreter served by code-interpreter
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Tool_groups: builtin::rag served by rag-runtime
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Tool_groups: builtin::websearch served by tavily-search
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:106:
Serving API eval
POST /v1/eval/tasks/{task_id}/evaluations
DELETE /v1/eval/tasks/{task_id}/jobs/{job_id}
GET /v1/eval/tasks/{task_id}/jobs/{job_id}/result
GET /v1/eval/tasks/{task_id}/jobs/{job_id}
POST /v1/eval/tasks/{task_id}/jobs
Serving API agents
POST /v1/agents
POST /v1/agents/{agent_id}/session
POST /v1/agents/{agent_id}/session/{session_id}/turn
DELETE /v1/agents/{agent_id}
DELETE /v1/agents/{agent_id}/session/{session_id}
GET /v1/agents/{agent_id}/session/{session_id}
GET /v1/agents/{agent_id}/session/{session_id}/turn/{turn_id}/step/{step_id}
GET /v1/agents/{agent_id}/session/{session_id}/turn/{turn_id}
Serving API scoring_functions
GET /v1/scoring-functions/{scoring_fn_id}
GET /v1/scoring-functions
POST /v1/scoring-functions
Serving API safety
POST /v1/safety/run-shield
Serving API inspect
GET /v1/health
GET /v1/inspect/providers
GET /v1/inspect/routes
GET /v1/version
Serving API tool_runtime
POST /v1/tool-runtime/invoke
GET /v1/tool-runtime/list-tools
POST /v1/tool-runtime/rag-tool/insert
POST /v1/tool-runtime/rag-tool/query
Serving API datasetio
POST /v1/datasetio/rows
GET /v1/datasetio/rows
Serving API shields
GET /v1/shields/{identifier}
GET /v1/shields
POST /v1/shields
Serving API eval_tasks
GET /v1/eval-tasks/{eval_task_id}
GET /v1/eval-tasks
POST /v1/eval-tasks
Serving API models
GET /v1/models/{model_id}
GET /v1/models
POST /v1/models
DELETE /v1/models/{model_id}
Serving API datasets
GET /v1/datasets/{dataset_id}
GET /v1/datasets
POST /v1/datasets
DELETE /v1/datasets/{dataset_id}
Serving API vector_io
POST /v1/vector-io/insert
POST /v1/vector-io/query
Serving API inference
POST /v1/inference/chat-completion
POST /v1/inference/completion
POST /v1/inference/embeddings
Serving API tool_groups
GET /v1/tools/{tool_name}
GET /v1/toolgroups/{toolgroup_id}
GET /v1/toolgroups
GET /v1/tools
POST /v1/toolgroups
DELETE /v1/toolgroups/{toolgroup_id}
Serving API vector_dbs
GET /v1/vector-dbs/{vector_db_id}
GET /v1/vector-dbs
POST /v1/vector-dbs
DELETE /v1/vector-dbs/{vector_db_id}
Serving API scoring
POST /v1/scoring/score
POST /v1/scoring/score-batch
Serving API telemetry
GET /v1/telemetry/traces/{trace_id}/spans/{span_id}
GET /v1/telemetry/spans/{span_id}/tree
GET /v1/telemetry/traces/{trace_id}
POST /v1/telemetry/events
GET /v1/telemetry/spans
GET /v1/telemetry/traces
POST /v1/telemetry/spans/export
Listening on ['::', '0.0.0.0']:5001
INFO: Started server process [65372]
INFO: Waiting for application startup.
INFO: ASGI 'lifespan' protocol appears unsupported.
INFO: Application startup complete.
INFO: Uvicorn running on http://['::', '0.0.0.0']:5001 (Press CTRL+C to quit)
^CINFO: Shutting down
INFO: Finished server process [65372]
Received signal SIGINT (2). Exiting gracefully...
INFO 2025-02-12 10:21:11,215 __main__:151: Shutting down ModelsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down InferenceRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ShieldsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down SafetyRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down VectorDBsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down VectorIORouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ToolGroupsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ToolRuntimeRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down MetaReferenceAgentsImpl
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down DatasetsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down DatasetIORouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down TelemetryAdapter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ScoringFunctionsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ScoringRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down EvalTasksRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down EvalRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down DistributionInspectImpl
```
[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Enables HTTPS option for Llama Stack.
While doing so, introduces a `ServerConfig` sub-structure to house all
server related configuration (port, ssl, etc.)
Also simplified the `start_container.sh` entrypoint to simply be
`python` instead of a complex bash command line.
## Test Plan
Conda:
Run:
```bash
$ llama stack build --template together
$ llama stack run --port 8322 # ensure server starts
$ llama-stack-client configure --endpoint http://localhost:8322
$ llama-stack-client models list
```
Create a self-signed SSL key / cert pair. Then, using a local checkout
of `llama-stack-client-python`, change
https://github.com/meta-llama/llama-stack-client-python/blob/main/src/llama_stack_client/_base_client.py#L759
to add `kwargs.setdefault("verify", False)` so SSL verification is
disabled. Then:
```bash
$ llama stack run --port 8322 --tls-keyfile <KEYFILE> --tls-certfile <CERTFILE>
$ llama-stack-client configure --endpoint https://localhost:8322 # notice the `https`
$ llama-stack-client models list
```
Also tested with containers (but of course one needs to make sure the
cert and key files are appropriately provided to the container.)
Lint check in main branch is failing. This fixes the lint check after we
moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We
need to move to a `ruff.toml` file as well as fixing and ignoring some
additional checks.
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
# What does this PR do?
This PR changes our API to follow more idiomatic REST API approaches of
having paths being resources and methods indicating the action being
performed.
Changes made to generator:
1) removed the prefix check of "get" as its not required and is actually
needed for other method types too
2) removed _ check on path since variables can have "_"
## Test Plan
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v
tests/client-sdk/agents/test_agents.py
# What does this PR do?
Rename environment var for consistency
## Test Plan
No regressions
## Sources
## Before submitting
- [X] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [X] Ran pre-commit to handle lint / formatting issues.
- [X] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [X] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
---------
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
Co-authored-by: Yuan Tang <terrytangyuan@gmail.com>
When we bump up `major.minor` we want to make sure clients can
immediately detect a version change and appropriately error out. It is
not reasonable to keep checking for API-level backwards compatibility
across such version bumps. Over time, we will make the check based only
on the major version perhaps.
### Test Plan
Manually updated `__version__` in the client SDK to be "0.1.0" which is
incompatible with server's current version "0.0.63", got the following
error:
<img width="1077" alt="image"
src="https://github.com/user-attachments/assets/06ae4659-0a25-4c4c-a999-ce44678d4e6f"
/>
Without this update, the CLI worked correctly.
# What does this PR do?
Change the Telemetry API to be able to support different use cases like
returning traces for the UI and ability to export for Evals.
Other changes:
* Add a new trace_protocol decorator to decorate all our API methods so
that any call to them will automatically get traced across all impls.
* There is some issue with the decorator pattern of span creation when
using async generators, where there are multiple yields with in the same
context. I think its much more explicit by using the explicit context
manager pattern using with. I moved the span creations in agent instance
to be using with
* Inject session id at the turn level, which should quickly give us all
traces across turns for a given session
Addresses #509
## Test Plan
```
llama stack run /Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml
PYTHONPATH=. python -m examples.agents.rag_with_memory_bank localhost 5000
curl -X POST 'http://localhost:5000/alpha/telemetry/query-traces' \
-H 'Content-Type: application/json' \
-d '{
"attribute_filters": [
{
"key": "session_id",
"op": "eq",
"value": "dd667b87-ca4b-4d30-9265-5a0de318fc65" }],
"limit": 100,
"offset": 0,
"order_by": ["start_time"]
}' | jq .
[
{
"trace_id": "6902f54b83b4b48be18a6f422b13e16f",
"root_span_id": "5f37b85543afc15a",
"start_time": "2024-12-04T08:08:30.501587",
"end_time": "2024-12-04T08:08:36.026463"
},
{
"trace_id": "92227dac84c0615ed741be393813fb5f",
"root_span_id": "af7c5bb46665c2c8",
"start_time": "2024-12-04T08:08:36.031170",
"end_time": "2024-12-04T08:08:41.693301"
},
{
"trace_id": "7d578a6edac62f204ab479fba82f77b6",
"root_span_id": "1d935e3362676896",
"start_time": "2024-12-04T08:08:41.695204",
"end_time": "2024-12-04T08:08:47.228016"
},
{
"trace_id": "dbd767d76991bc816f9f078907dc9ff2",
"root_span_id": "f5a7ee76683b9602",
"start_time": "2024-12-04T08:08:47.234578",
"end_time": "2024-12-04T08:08:53.189412"
}
]
curl -X POST 'http://localhost:5000/alpha/telemetry/get-span-tree' \
-H 'Content-Type: application/json' \
-d '{ "span_id" : "6cceb4b48a156913", "max_depth": 2, "attributes_to_return": ["input"] }' | jq .
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 875 100 790 100 85 18462 1986 --:--:-- --:--:-- --:--:-- 20833
{
"span_id": "6cceb4b48a156913",
"trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
"parent_span_id": "892a66d726c7f990",
"name": "retrieve_rag_context",
"start_time": "2024-12-04T09:28:21.781995",
"end_time": "2024-12-04T09:28:21.913352",
"attributes": {
"input": [
"{\"role\":\"system\",\"content\":\"You are a helpful assistant\"}",
"{\"role\":\"user\",\"content\":\"What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.\",\"context\":null}"
]
},
"children": [
{
"span_id": "1a2df181854064a8",
"trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
"parent_span_id": "6cceb4b48a156913",
"name": "MemoryRouter.query_documents",
"start_time": "2024-12-04T09:28:21.787620",
"end_time": "2024-12-04T09:28:21.906512",
"attributes": {
"input": null
},
"children": [],
"status": "ok"
}
],
"status": "ok"
}
```
<img width="1677" alt="Screenshot 2024-12-04 at 9 42 56 AM"
src="https://github.com/user-attachments/assets/4d3cea93-05ce-415a-93d9-4b1628631bf8">
# What does this PR do?
This PR fixes some of the issues with our telemetry setup to enable logs
to be delivered to opentelemetry and jaeger. Main fixes
1) Updates the open telemetry provider to use the latest oltp exports
instead of deprected ones.
2) Adds a tracing middleware, which injects traces into each HTTP
request that the server recieves and this is going to be the root trace.
Previously, we did this in the create_dynamic_route method, which is
actually not the actual exectuion flow, but more of a config and this
causes the traces to end prematurely. Through middleware, we plugin the
trace start and end at the right location.
3) We manage our own methods to create traces and spans and this does
not fit well with Opentelemetry SDK since it does not support provide a
way to take in traces and spans that are already created. it expects us
to use the SDK to create them. For now, I have a hacky approach of just
maintaining a map from our internal telemetry objects to the open
telemetry specfic ones. This is not the ideal solution. I will explore
other ways to get around this issue. for now, to have something that
works, i am going to keep this as is.
Addresses: #509
# What does this PR do?
This PR moves all print statements to use logging. Things changed:
- Had to add `await start_trace("sse_generator")` to server.py to
actually get tracing working. else was not seeing any logs
- If no telemetry provider is provided in the run.yaml, we will write to
stdout
- by default, the logs are going to be in JSON, but we expose an option
to configure to output in a human readable way.
When running with dockers, the idea is that users be able to work purely
with the `llama stack` CLI. They should not need to know about the
existence of any YAMLs unless they need to. This PR enables it.
The docker command now doesn't need to volume mount a yaml and can
simply be:
```bash
docker run -v ~/.llama/:/root/.llama \
--env A=a --env B=b
```
## Test Plan
Check with conda first (no regressions):
```bash
LLAMA_STACK_DIR=. llama stack build --template ollama
llama stack run ollama --port 5001
# server starts up correctly
```
Check with docker
```bash
# build the docker
LLAMA_STACK_DIR=. llama stack build --template ollama --image-type docker
export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
docker run -it -p 5001:5001 \
-v ~/.llama:/root/.llama \
-v $PWD:/app/llama-stack-source \
localhost/distribution-ollama:dev \
--port 5001 \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://host.docker.internal:11434
```
Note that volume mounting to `/app/llama-stack-source` is only needed
because we built the docker with uncommitted source code.
This PR adds a method in stack to return the stackrunconfig object based
on the template name. This will be used to instantiate a direct client
without the need for an explicit run.yaml
---------
Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
# What does this PR do?
Automatically generates
- build.yaml
- run.yaml
- run-with-safety.yaml
- parts of markdown docs
for the distributions.
## Test Plan
At this point, this only updates the YAMLs and the docs. Some testing
(especially with ollama and vllm) has been performed but needs to be
much more tested.
# What does this PR do?
We'd like our docker steps to require _ZERO EDITS_ to a YAML file in
order to get going. This is often not possible because depending on the
provider, we do need some configuration input from the user. Environment
variables are the best way to obtain this information.
This PR allows our run.yaml to contain `${env.FOO_BAR}` placeholders
which can be replaced using `docker run -e FOO_BAR=baz` (and similar
`docker compose` equivalent).
## Test Plan
For remote-vllm, example `run.yaml` snippet looks like this:
```yaml
providers:
inference:
# serves main inference model
- provider_id: vllm-0
provider_type: remote::vllm
config:
# NOTE: replace with "localhost" if you are running in "host" network mode
url: ${env.LLAMA_INFERENCE_VLLM_URL:http://host.docker.internal:5100/v1}
max_tokens: ${env.MAX_TOKENS:4096}
api_token: fake
# serves safety llama_guard model
- provider_id: vllm-1
provider_type: remote::vllm
config:
# NOTE: replace with "localhost" if you are running in "host" network mode
url: ${env.LLAMA_SAFETY_VLLM_URL:http://host.docker.internal:5101/v1}
max_tokens: ${env.MAX_TOKENS:4096}
api_token: fake
```
`compose.yaml` snippet looks like this:
```yaml
llamastack:
depends_on:
- vllm-0
- vllm-1
# image: llamastack/distribution-remote-vllm
image: llamastack/distribution-remote-vllm:test-0.0.52rc3
volumes:
- ~/.llama:/root/.llama
- ~/local/llama-stack/distributions/remote-vllm/run.yaml:/root/llamastack-run-remote-vllm.yaml
# network_mode: "host"
environment:
- LLAMA_INFERENCE_VLLM_URL=${LLAMA_INFERENCE_VLLM_URL:-http://host.docker.internal:5100/v1}
- LLAMA_INFERENCE_MODEL=${LLAMA_INFERENCE_MODEL:-Llama3.1-8B-Instruct}
- MAX_TOKENS=${MAX_TOKENS:-4096}
- SQLITE_STORE_DIR=${SQLITE_STORE_DIR:-$HOME/.llama/distributions/remote-vllm}
- LLAMA_SAFETY_VLLM_URL=${LLAMA_SAFETY_VLLM_URL:-http://host.docker.internal:5101/v1}
- LLAMA_SAFETY_MODEL=${LLAMA_SAFETY_MODEL:-Llama-Guard-3-1B}
```
# What does this PR do?
This PR kills the notion of "pure passthrough" remote providers. You
cannot specify a single provider you must specify a whole distribution
(stack) as remote.
This PR also significantly fixes / upgrades testing infrastructure so
you can now test against a remotely hosted stack server by just doing
```bash
pytest -s -v -m remote test_agents.py \
--inference-model=Llama3.1-8B-Instruct --safety-shield=Llama-Guard-3-1B \
--env REMOTE_STACK_URL=http://localhost:5001
```
Also fixed `test_agents_persistence.py` (which was broken) and killed
some deprecated testing functions.
## Test Plan
All the tests.
# What does this PR do?
This PR brings back the facility to not force registration of resources
onto the user. This is not just annoying but actually not feasible
sometimes. For example, you may have a Stack which boots up with private
providers for inference for models A and B. There is no way for the user
to actually know which model is being served by these providers now (to
be able to register it.)
How will this avoid the users needing to do registration? In a follow-up
diff, I will make sure I update the sample run.yaml files so they list
the models served by the distributions explicitly. So when users do
`llama stack build --template <...>` and run it, their distributions
come up with the right set of models they expect.
For self-hosted distributions, it also allows us to have a place to
explicit list the models that need to be served to make the "complete"
stack (including safety, e.g.)
## Test Plan
Started ollama locally with two lightweight models: Llama3.2-3B-Instruct
and Llama-Guard-3-1B.
Updated all the tests including agents. Here's the tests I ran so far:
```bash
pytest -s -v -m "fireworks and llama_3b" test_text_inference.py::TestInference \
--env FIREWORKS_API_KEY=...
pytest -s -v -m "ollama and llama_3b" test_text_inference.py::TestInference
pytest -s -v -m ollama test_safety.py
pytest -s -v -m faiss test_memory.py
pytest -s -v -m ollama test_agents.py \
--inference-model=Llama3.2-3B-Instruct --safety-model=Llama-Guard-3-1B
```
Found a few bugs here and there pre-existing that these test runs fixed.
Splits the meta-reference safety implementation into three distinct providers:
- inline::llama-guard
- inline::prompt-guard
- inline::code-scanner
Note that this PR is a backward incompatible change to the llama stack server. I have added deprecation_error field to ProviderSpec -- the server reads it and immediately barfs. This is used to direct the user with a specific message on what action to perform. An automagical "config upgrade" is a bit too much work to implement right now :/
(Note that we will be gradually prefixing all inline providers with inline:: -- I am only doing this for this set of new providers because otherwise existing configuration files will break even more badly.)
* persist registered objects with distribution
* linter fixes
* comment
* use annotate and field discriminator
* workign tests
* donot use global state
* precommit failures fixed
* add back Any
* fix imports
* remove unnecessary changes in ollama
* precommit failures fixed
* make kvstore configurable for dist and rename registry
* add comment about registry list return
* fix linter errors
* use registry to hydrate
* remove debug print
* linter fixes
* remove kvstore.db
* rename distribution_registry_store
---------
Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>